Design Heat Exchanger Type Shell-Tube Mathematically With 2-Butanol Hot Fluid and Cold Fluid Steam for the Production of MEK

Published: Jan 24, 2023

Abstract:

Purpose: This study aims to analyse and develop design a heat exchanger (HE) for the production of Methyl Ethyl Ketone (MEK) which will be compiled into a computational program for the design of shell-tube type HE.

Methodology: The problem with this HE is that the temperature of 2-butanol is 30?C from the storage tank. While the HE reactor requires a temperature of 99.6?C, HE plays a role in increasing the temperature from 30?C to 99.6?C. To be more energy efficient, researchers used heat of the product, MEK. Which is where to exchange heat from the product to the reactants. The design of a shell-tube two-pass exchanger with a working fluid in the form of 2-butanol as a hot fluid with water as a cold fluid. The HE specification on the shell size for the pressure drop is 4.9959E-06 psia, while the tube size for the pressure drop is 2.6550E-04 psia. The effective value of 14%.

Results: Thus, HE with shell and tube doesn’t meet the requirements and standards of TEMA. Although the shell and tube type of HE doesn’t conform to the criteria and standards specified in industrial applications, the analysis can be used as a learning tool for the design process, heme performance analysis, and operating mechanism of the HE.

Limitations: This research is focused on developing HE designs for the production of MEK.

Contribution: This research can provide a reference for designing HE in industrial development.

Keywords:
1. Methyl Ethyl Ketone
2. Heat Exchanger
3. Shell and Tube
4. Education
5. Effectiveness
Authors:
1 . Vizny Grace Irene Damanik
2 . Asep B.D.N
3 . Teguh Kurniawan
How to Cite
Damanik, V. G. I., Nandiyanto, A. B. D., & Kurniawan, T. (2023). Design Heat Exchanger Type Shell-Tube Mathematically With 2-Butanol Hot Fluid and Cold Fluid Steam for the Production of MEK . Jurnal Ilmiah Widyaiswara, 2(1), 1–11. https://doi.org/10.35912/jiw.v2i1.1777

Downloads

Download data is not yet available.
Issue & Section
References

    Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. a. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137.

    Banuwa, A., & Susanti, A. N. (2021). Analisis kebutuhan pelatihan ASN Penyuluh Keluarga Berencana (PKB) di provinsi Lampung. Jurnal Ilmiah Widyaiswara, 1(1), 35-43. doi:10.35912/jiw.v1i1.240

    Chadwick, S. S. (1988). Ullmann's encyclopedia of industrial chemistry. Reference Services Review.

    Gawande, S. H., Wankhede, S. D., Yerrawar, R. N., Sonawane, V. J., & Ubarhande, U. B. (2012). Design and development of shell & tube heat exchanger for beverage.

    KRISTIANA, L., & MANURUNG, A. (2021). An Energy Balance Model for a Small Educational Thermal Device. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(2), 333.

    Muhammad, I., & Yulianto, S. (2018). REDESIGN PLATE HEAT EXCHANGER PADA CLOSED COOLING WATER SYSTEM PLTGU KAPASITAS 740 MW. Prosiding Semnastek.

    Nuraeni, A. H. (2022). Simplified Analysis of Environmental Permits Integrated through OSS (Online Single Submission). Jurnal Ilmiah Widyaiswara, 1(1), 45-54. doi:10.35912/jiw.v1i1.678

    Prasad, A. K., & Anand, K. (2020). Design and analysis of shell and tube type heat exchanger. Int. J. Eng. Res. Technol., 524-539.

    Purnamasari, H. N., Kurniawan, T., & Nandiyanto, A. B. D. (2021). DESIGN OF SHELL AND TUBE TYPE HEAT EXCHANGER FOR NANOFIBRIL CELLULOSE PRODUCTION PROCESS. International Journal of Research and Applied Technology (INJURATECH), 1(2), 318-329.

    Putra, I. (2017). Studi perhitungan heat exchanger type shell and tube dehumidifier biogas limbah sawit untuk pembangkit listrik tenaga biogas. Jurnal Polimesin, 15(2), 42-49.

    SEPTIAN, B., Rey, P. D., & AZIZ, A. (2021). Desain dan rancang bangun alat penukar kalor (heat exchanger) jenis shell dan tube. Baut dan Manufaktur, 3(01), 52-60.

    Veriyawan, R., Biyanto, T., & Nugroho, G. (2014). Optimasi Desain Heat Exchanger Shell-And-Tube Menggunakan Metode Particle Swarm Optimization. Jurnal Institut Teknologi Sepuluh Nopember (ITS), Surabaya.

    Wicaksono, C., Wijanarko, E., Simanullang, O. H., & Tahad, A. (2018). Perancangan Eco Heat Exchanger Type 1-2 Shell And Tube dan Pengaruh Jumlah Baffle Terhadap Transfer Panas. Jurnal Chemurgy, 1(1), 27-30.

    Wuryanti, S., Hudalil, A., & Nugrahaeni, I. (2021). Gambaran kompetensi Widyaiswara dalam mengelola pembelajaran di Pusat Pendidikan dan Pelatihan Kesejahteraan Sosial Kementerian Sosial. Jurnal Ilmiah Widyaiswara, 1(1), 27-34. doi:10.35912/jiw.v1i1.233

    Zohuri, B. (2017). Compact heat exchangers: Springer.

  1. Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. a. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137.
  2. Banuwa, A., & Susanti, A. N. (2021). Analisis kebutuhan pelatihan ASN Penyuluh Keluarga Berencana (PKB) di provinsi Lampung. Jurnal Ilmiah Widyaiswara, 1(1), 35-43. doi:10.35912/jiw.v1i1.240
  3. Chadwick, S. S. (1988). Ullmann's encyclopedia of industrial chemistry. Reference Services Review.
  4. Gawande, S. H., Wankhede, S. D., Yerrawar, R. N., Sonawane, V. J., & Ubarhande, U. B. (2012). Design and development of shell & tube heat exchanger for beverage.
  5. KRISTIANA, L., & MANURUNG, A. (2021). An Energy Balance Model for a Small Educational Thermal Device. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(2), 333.
  6. Muhammad, I., & Yulianto, S. (2018). REDESIGN PLATE HEAT EXCHANGER PADA CLOSED COOLING WATER SYSTEM PLTGU KAPASITAS 740 MW. Prosiding Semnastek.
  7. Nuraeni, A. H. (2022). Simplified Analysis of Environmental Permits Integrated through OSS (Online Single Submission). Jurnal Ilmiah Widyaiswara, 1(1), 45-54. doi:10.35912/jiw.v1i1.678
  8. Prasad, A. K., & Anand, K. (2020). Design and analysis of shell and tube type heat exchanger. Int. J. Eng. Res. Technol., 524-539.
  9. Purnamasari, H. N., Kurniawan, T., & Nandiyanto, A. B. D. (2021). DESIGN OF SHELL AND TUBE TYPE HEAT EXCHANGER FOR NANOFIBRIL CELLULOSE PRODUCTION PROCESS. International Journal of Research and Applied Technology (INJURATECH), 1(2), 318-329.
  10. Putra, I. (2017). Studi perhitungan heat exchanger type shell and tube dehumidifier biogas limbah sawit untuk pembangkit listrik tenaga biogas. Jurnal Polimesin, 15(2), 42-49.
  11. SEPTIAN, B., Rey, P. D., & AZIZ, A. (2021). Desain dan rancang bangun alat penukar kalor (heat exchanger) jenis shell dan tube. Baut dan Manufaktur, 3(01), 52-60.
  12. Veriyawan, R., Biyanto, T., & Nugroho, G. (2014). Optimasi Desain Heat Exchanger Shell-And-Tube Menggunakan Metode Particle Swarm Optimization. Jurnal Institut Teknologi Sepuluh Nopember (ITS), Surabaya.
  13. Wicaksono, C., Wijanarko, E., Simanullang, O. H., & Tahad, A. (2018). Perancangan Eco Heat Exchanger Type 1-2 Shell And Tube dan Pengaruh Jumlah Baffle Terhadap Transfer Panas. Jurnal Chemurgy, 1(1), 27-30.
  14. Wuryanti, S., Hudalil, A., & Nugrahaeni, I. (2021). Gambaran kompetensi Widyaiswara dalam mengelola pembelajaran di Pusat Pendidikan dan Pelatihan Kesejahteraan Sosial Kementerian Sosial. Jurnal Ilmiah Widyaiswara, 1(1), 27-34. doi:10.35912/jiw.v1i1.233
  15. Zohuri, B. (2017). Compact heat exchangers: Springer.