Pengaruh GAAIS terhadap Personal Innovativeness: Sikap pada Lintas Generasi
Abstract:
Purpose: To see the attitude of AI towards personal innovativeness and to see the differences in attitudes between generation Z and previous generations
Research methodology: Respondents in this study are 1,293 people consisted of entrepreneurs and professional workers covering generation Z and previous generations.
Results: GAAIS has influence of 9.5% on personal innovativeness, bus the data showa no statistically significant difference in attitude towards AI between cross-generational.
Limitations: The analysis in this study still requires the addition of more in-depth variables such as personality, trust, social and subject norms to be able to predict attitudes towards AI in more depth.
Contribution: This study is expected to provide deeper insight into the influence of attitudes towards AI on personal innovativeness, considering that in the future AI will be close on society.
Downloads

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Alkawsi, G., Ali, N., & Baashar, Y. (2021). The Moderating Role of Personal Innovativeness and Users Experience in Accepting the Smart Meter Technology. Applied Science, 11, 3297. doi:10.3390/app11083297
Bendbya, H., Davenport, T. H., & Pachidi, S. (2020). Artificial Intelligence in Organizations: Current State and Future Opportunities. MIS Quarterly Executive, 19(4), 9-21. doi:10.2139/ssrn.3741983
Boonprasert, M. (Ed.). (2021). Apheit International Journal (Vol. 10). Thailand: The Association of Private Higher Education Institutions of Thailand under the Patronage of Her Royal Highness Princess Maha Chakri Sirindhorn (APHEIT).
Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2020). The Strategic Use of Artificial Intelligence in the Digital Era: Systematic Literature Review and Future Research Directions. International Journal of Information Management, (). doi:10.1016/j.ijinfomgt.2020.102225
Calvo-Porral, C., & Pesqueira-Sanchez, R. (2019). Generational differences in technology behaviour: comparing millennials and Generation X. Kybernetes, 49(11), 2755-2772. doi:https://doi.org/10.1108/K-09-2019-0598
Chan, C. K., & Lee, K. K. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environment, 10(60). doi:10.1186/s40561-023-00269-3
Corporation, I. (2022). IBM Global AI Adoption Index 2022. United States of America. Retrieved from https://www.ibm.com/downloads/cas/GVAGA3JP
Darma, B. (2021). Statistika Penelitian Menggunakan SPSS. Yogyakarta: GUEPEDIA.
Francis, T., & Hoefel, F. (2018). ‘True Gen’: Generation Z and its Implications for Companies. Mckinsey&Company.
Hill, R. (2017). Embracing Digital: Key Considerations for Publishers, Marketers and Customers. Information Service & Use, 37(3), 349-354. doi:10.3233/ISU-170845
Huang, M.-H., Rush, R., & Maksimovic, V. (2019). The Feeling Economy: Managing in the Next Generation of Artificial Intelligence (AI). California Management Review, 61(4), 1-23. doi:https://doi.org/10.1177/0008125619863436
Jiyoung, P., & Sang, W. E. (2022). Who Likes Artificial Intelligence? Personality Predictors of Attitudes toward Artificial Intelligence. The Journal of Psychology, 156(1), 68-94. doi:10.1080/00223980.2021.2012109
Kaya, F., Aydin, F., Schepman, A., Roadway, P., Yetisensoy, O., & Kaya, M. D. (2022). The Roles of Personality Traits, AI Anxiety, and Demographic Factors in Attitudes toward Artificial Intelligence. International Journal Of Human–Computer Interaction, 40(2), 497-514. doi:https://doi.org/10.1080/10447318.2022.2151730
Lichtenthaler, U. (2019). Extremes of acceptance: employee attitudes toward artificial intelligence. Journal of Business Strategy, 41(5), 39-45. doi:https://doi.org/10.1108/JBS-12-2018-0204
Liu, J., Chang, H., Forrest, J. Y.-L., & Yang, B. (2020). Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors. Technological Forecasting & Social Change, 158. doi:10.1016/j.techfore.2020.120142
Mohammad, M. M., Poursaberi, R., & Salahshoor, M. R. (2018). Evaluating the Adoption of Evidence-Based Practice Using Rogers’s Diffusion of Innovation Theory: A Model Testing Study. Health Promotion Perspective, 8(1), 25-32. doi:10.15171/hpp.2018.03
N.N., M., & Dixit, Y. (2020). IoT, Big Data and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, PP99, 1-1. doi:10.1109/JIOT.2020.2998584
Sahoo, R. (2021). Researching Children and Childhoods in India. New Delhi: School of Open Learning.
Schepman, A., & Roadway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in Human Behavior Reports, 1. doi:https://doi.org/10.1016/j.chbr.2020.100014
Schepman, A., & Roadway, P. (2023). The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory Validation and Associations with Personality, Corporate Distrust, and General Trust. International Journal of Human–Computer Interaction, 39(13), 2724-2741. doi:10.1080/10447318.2022.2085400
Silvia, V. (2021). Statistika Deskriptif . Yogyakarta: Andi Offset. Retrieved July 15, 2024
Vargo, S. L., & Akaka, M. A. (2020). Rethinking the Process of Diffusion in Innovation: A Service-Ecosystems and Institutional Perspective. Journal of Business Research, 116, 526-534. doi:https://doi.org/10.1016/j.jbusres.2020.01.038
Vargo, S. L., Wieland, H., & Akaka, M. A. (2015). Innovation Through Institutionalization: A service Ecosystems Perspective. Industrial Marketing Management, 44, 63-72. doi:https://doi.org/10.1016/j.indmarman.2014.10.008
Verganti, R., Vendraminelli, L., & Lansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212-227. doi:10.1111/jpim.12523
Wörndl, W., Koo, C., & Stienmetz, J. L. (Eds.). (2021). Information and Communication Technologies in Tourism 2021: Proceedings of the ENTER 2021 ETourism Conference, January 19–22, 2021. Switzerland: Springer International Publishing.
- Alkawsi, G., Ali, N., & Baashar, Y. (2021). The Moderating Role of Personal Innovativeness and Users Experience in Accepting the Smart Meter Technology. Applied Science, 11, 3297. doi:10.3390/app11083297
- Bendbya, H., Davenport, T. H., & Pachidi, S. (2020). Artificial Intelligence in Organizations: Current State and Future Opportunities. MIS Quarterly Executive, 19(4), 9-21. doi:10.2139/ssrn.3741983
- Boonprasert, M. (Ed.). (2021). Apheit International Journal (Vol. 10). Thailand: The Association of Private Higher Education Institutions of Thailand under the Patronage of Her Royal Highness Princess Maha Chakri Sirindhorn (APHEIT).
- Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2020). The Strategic Use of Artificial Intelligence in the Digital Era: Systematic Literature Review and Future Research Directions. International Journal of Information Management, (). doi:10.1016/j.ijinfomgt.2020.102225
- Calvo-Porral, C., & Pesqueira-Sanchez, R. (2019). Generational differences in technology behaviour: comparing millennials and Generation X. Kybernetes, 49(11), 2755-2772. doi:https://doi.org/10.1108/K-09-2019-0598
- Chan, C. K., & Lee, K. K. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers? Smart Learning Environment, 10(60). doi:10.1186/s40561-023-00269-3
- Corporation, I. (2022). IBM Global AI Adoption Index 2022. United States of America. Retrieved from https://www.ibm.com/downloads/cas/GVAGA3JP
- Darma, B. (2021). Statistika Penelitian Menggunakan SPSS. Yogyakarta: GUEPEDIA.
- Francis, T., & Hoefel, F. (2018). ‘True Gen’: Generation Z and its Implications for Companies. Mckinsey&Company.
- Hill, R. (2017). Embracing Digital: Key Considerations for Publishers, Marketers and Customers. Information Service & Use, 37(3), 349-354. doi:10.3233/ISU-170845
- Huang, M.-H., Rush, R., & Maksimovic, V. (2019). The Feeling Economy: Managing in the Next Generation of Artificial Intelligence (AI). California Management Review, 61(4), 1-23. doi:https://doi.org/10.1177/0008125619863436
- Jiyoung, P., & Sang, W. E. (2022). Who Likes Artificial Intelligence? Personality Predictors of Attitudes toward Artificial Intelligence. The Journal of Psychology, 156(1), 68-94. doi:10.1080/00223980.2021.2012109
- Kaya, F., Aydin, F., Schepman, A., Roadway, P., Yetisensoy, O., & Kaya, M. D. (2022). The Roles of Personality Traits, AI Anxiety, and Demographic Factors in Attitudes toward Artificial Intelligence. International Journal Of Human–Computer Interaction, 40(2), 497-514. doi:https://doi.org/10.1080/10447318.2022.2151730
- Lichtenthaler, U. (2019). Extremes of acceptance: employee attitudes toward artificial intelligence. Journal of Business Strategy, 41(5), 39-45. doi:https://doi.org/10.1108/JBS-12-2018-0204
- Liu, J., Chang, H., Forrest, J. Y.-L., & Yang, B. (2020). Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors. Technological Forecasting & Social Change, 158. doi:10.1016/j.techfore.2020.120142
- Mohammad, M. M., Poursaberi, R., & Salahshoor, M. R. (2018). Evaluating the Adoption of Evidence-Based Practice Using Rogers’s Diffusion of Innovation Theory: A Model Testing Study. Health Promotion Perspective, 8(1), 25-32. doi:10.15171/hpp.2018.03
- N.N., M., & Dixit, Y. (2020). IoT, Big Data and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, PP99, 1-1. doi:10.1109/JIOT.2020.2998584
- Sahoo, R. (2021). Researching Children and Childhoods in India. New Delhi: School of Open Learning.
- Schepman, A., & Roadway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in Human Behavior Reports, 1. doi:https://doi.org/10.1016/j.chbr.2020.100014
- Schepman, A., & Roadway, P. (2023). The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory Validation and Associations with Personality, Corporate Distrust, and General Trust. International Journal of Human–Computer Interaction, 39(13), 2724-2741. doi:10.1080/10447318.2022.2085400
- Silvia, V. (2021). Statistika Deskriptif . Yogyakarta: Andi Offset. Retrieved July 15, 2024
- Vargo, S. L., & Akaka, M. A. (2020). Rethinking the Process of Diffusion in Innovation: A Service-Ecosystems and Institutional Perspective. Journal of Business Research, 116, 526-534. doi:https://doi.org/10.1016/j.jbusres.2020.01.038
- Vargo, S. L., Wieland, H., & Akaka, M. A. (2015). Innovation Through Institutionalization: A service Ecosystems Perspective. Industrial Marketing Management, 44, 63-72. doi:https://doi.org/10.1016/j.indmarman.2014.10.008
- Verganti, R., Vendraminelli, L., & Lansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212-227. doi:10.1111/jpim.12523
- Wörndl, W., Koo, C., & Stienmetz, J. L. (Eds.). (2021). Information and Communication Technologies in Tourism 2021: Proceedings of the ENTER 2021 ETourism Conference, January 19–22, 2021. Switzerland: Springer International Publishing.