Potensi Terapeutik dari Metabolit Aktif Rimpang Jahe dalam Memodulasi Imunitas Tubuh terhadap Covid-19

Published: Mar 17, 2022

Abstract:

Purpose: The purpose of this study was to determine the role of various active compounds in rhizome of ginger as an immunomodulator so that rhizome of ginger can be used to prevent and treat COVID-19. Currently, there are no specific therapies such as antiviral drugs that are relevant to treat COVID-19. However, herbal treatment is one of the efforts in handling this pandemic.

Methodology: The method used is a literature review with the inclusion criteria of international scientific journals in the last ten years (2012-2021) which is accessed through trusted sites.

Result: The results obtained are experimentally and clinically, ginger (Zingiber officinale rhizome) has shown various therapeutic activities, including anti-inflammatory, antioxidant, and immunomodulatory so it provides direct antiviral effects.

Limitations: There is no precise identification of SARS-CoV-2 infection in the host organ and evaluation of the impact of ginger on virus-infected tissues.

Contribution: Because of ginger can be used as a potential therapeutic ingredient, this study will contribute to preventing and treating COVID-19.

Keywords:
1. COVID-19
2. Immunomodulator
3. Rhizome of Ginger
Authors:
Dinda Afifa
How to Cite
Afifa, D. (2022). Potensi Terapeutik dari Metabolit Aktif Rimpang Jahe dalam Memodulasi Imunitas Tubuh terhadap Covid-19. Jurnal Ilmu Medis Indonesia, 1(2), 71–81. https://doi.org/10.35912/jimi.v1i2.917

Downloads

Issue & Section
References

    Abdel-Moneim, A., Morsy, B. M., Mahmoud, A. M., Abo-Seif, M. A., & Zanaty, M. I. (2013). Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI journal, 12, 943–955.

    Ahmad, A., Rehman, M. U., & Alkharfy, K. M. (2020). An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections. European review for medical and pharmacological sciences, 24(7), 4030–4034. https://doi.org/10.26355/eurrev_202004_20873

    Aldwihi, L. A., Khan, S. I., Alamri, F. F., AlRuthia, Y., Alqahtani, F., Fantoukh, O. I., Assiri, A., & Almohammed, O. A. (2021). Patients' Behavior Regarding Dietary or Herbal Supplements before and during COVID-19 in Saudi Arabia. International journal of environmental research and public health, 18(10), 5086. https://doi.org/10.3390/ijerph18105086

    Al-Nahain, A., Jahan, R., & Rahmatullah, M. (2014). Officinale Zingiber: A potential plant against rheumatoid arthritis. Arthritis, 159089. https://doi.org/10.1155/2014/159089.

    Awad, F., Assrawi, E., Louvrier, C., Jumeau, C., Georgin-Lavialle, S., Grateau, G., Amselem, S., Giurgea, I., & Karabina, S. A. (2018). Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & therapeutics, 187, 133–149. https://doi.org/10.1016/j.pharmthera.2018.02.011

    Azam, M.N., Al Mahamud, R., Hasan, A., & Jahan, R. (2020). Some home remedies used for treatment of COVID-19 in Bangladesh. Journal Medoicine Plants Studies, 8(4):27-32.

    Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology, 39(5), 529–539. https://doi.org/10.1007/s00281-017-0629-x

    Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of ethnopharmacology, 145(1), 146–151. https://doi.org/10.1016/j.jep.2012.10.043

    Chen, X., & Yu, J. (2019). Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation (P06-072-19). Current Developments in Nutrition, 3(1), nzz031.P06-072-19. https://doi.org/10.1093/cdn/nzz031.P06-072-19.

    Choi, J. G., Kim, S. Y., Jeong, M., & Oh, M. S. (2018). Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacology & therapeutics, 182, 56–69. https://doi.org/10.1016/j.pharmthera.2017.08.010

    Cicco, S., Cicco, G., Racanelli, V., & Vacca, A. (2020). Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators of inflammation, 7527953. https://doi.org/10.1155/2020/7527953

    Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., & Kritas, S. K. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. Journal of biological regulators and homeostatic agents, 34(2), 327–331. https://doi.org/10.23812/CONTI-E

    Ezzat, S. M., Ezzat, M. I., Okba, M. M., Menze, E. T., & Abdel-Naim, A. B. (2018). The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. Journal of ethnopharmacology, 214, 113–123. https://doi.org/10.1016/j.jep.2017.12.019

    FitzGerald G. A. (2020). Misguided drug advice for COVID-19. Science (New York, N.Y.), 367(6485), 1434. https://doi.org/10.1126/science.abb8034

    Freeman, T. L., & Swartz, T. H. (2020). Targeting the NLRP3 Inflammasome in Severe COVID-19. Frontiers in immunology, 11, 1518. https://doi.org/10.3389/fimmu.2020.01518

    Ghebremedhin, A., Salam, A. B., Adu-Addai, B., Noonan, S., Stratton, R., Ahmed, M., Khantwal, C., Martin, G. R., Lin, H., Andrews, C., Karanam, B., Rudloff, U., Lopez, H., Jaynes, J., & Yates, C. (2020). A Novel CD206 Targeting Peptide Inhibits Bleomycin Induced Pulmonary Fibrosis in Mice. bioRxiv : the preprint server for biology, 2020.07.27.218115.https://doi.org/10.1101/2020.07.27.218115

    Gil, L., Hernández, R. G., Delgado-Roche, L., & Fernández, O. S. L. (2015). Oxidative Stress in the Aging Process: Fundamental Aspects and New Insights. 10.1021/bk-2015-1200.ch006.

    Guan, W. J., & Zhong, N. S. (2020). Clinical Characteristics of Covid-19 in China. Reply. The New England journal of medicine, 382(19), 1861–1862. https://doi.org/10.1056/NEJMc2005203

    Hoxha M. (2020). What about COVID-19 and arachidonic acid pathway?. European journal of clinical pharmacology, 76(11), 1501–1504. https://doi.org/10.1007/s00228-020-02941-w

    Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S., & Nemati, M. (2020). Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life sciences, 257, 118102. https://doi.org/10.1016/j.lfs.2020.118102

    Jafarzadeh, A., & Nemati, M. (2018). Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. Journal of neuroimmunology, 324, 54–75. https://doi.org/10.1016/j.jneuroim.2018.09.003

    Jafarzadeh, A., Nemati, M., Khorramdelazad, H., & Mirshafiey, A. (2019). The Toll-like Receptor 2 (TLR2)-related Immunopathological Responses in the Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Iranian journal of allergy, asthma, and immunology, 18(3), 230–250. https://doi.org/10.18502/ijaai.v18i3.1117

    Jamilloux, Y., Henry, T., Belot, A., Viel, S., Fauter, M., El Jammal, T., Walzer, T., François, B., & Sève, P. (2020). Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmunity reviews, 19(7), 102567. https://doi.org/10.1016/j.autrev.2020.102567

    Khan, A. M., Shahzad, M., Raza Asim, M. B., Imran, M., & Shabbir, A. (2015). Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharmaceutical biology, 53(3), 359–367. https://doi.org/10.3109/13880209.2014.920396

    Khomich, O. A., Kochetkov, S. N., Bartosch, B., & Ivanov, A. V. (2018). Redox Biology of Respiratory Viral Infections. Viruses, 10(8), 392. https://doi.org/10.3390/v10080392

    Kim, Y., Kim, D. M., & Kim, J. Y. (2017). Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators. Journal of food science, 82(5), 1264–1270. https://doi.org/10.1111/1750-3841.13695

    Kim, Y. G., Kim, M. O., Kim, S. H., Kim, H. J., Pokhrel, N. K., Lee, J. H., Lee, H. J., Kim, J. Y., & Lee, Y. (2020). 6-Shogaol, an active ingredient of ginger, inhibits osteoclastogenesis and alveolar bone resorption in ligature-induced periodontitis in mice. Journal of periodontology, 91(6), 809–818. https://doi.org/10.1002/JPER.19-0228

    Kiyama R. (2020). Nutritional implications of ginger: chemistry, biological activities and signaling pathways. The Journal of nutritional biochemistry, 86, 108486. https://doi.org/10.1016/j.jnutbio.2020.108486

    Mahluji, S., Ostadrahimi, A., Mobasseri, M., Ebrahimzade Attari, V., & Payahoo, L. (2013). Anti-inflammatory effects of zingiber officinale in type 2 diabetic patients. Advanced pharmaceutical bulletin, 3(2), 273–276. https://doi.org/10.5681/apb.2013.044

    Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods (Basel, Switzerland), 8(6), 185. https://doi.org/10.3390/foods8060185

    Masykur, F. abdul. (2022). Hubungan Antara Lama Demam dengan Hasil Pemeriksaan Profil Darah pada Pasien Demam Berdarah Dengue . Jurnal Ilmu Medis Indonesia, 1(2), 53-58. https://doi.org/10.35912/jimi.v1i2.912

    Mesri, M., Esmaeili Saber, S. S., Godazi, M., Roustaei Shirdel, A., Montazer, R., Koohestani, H. ., Baghcheghi, N., Karimy, M., & Azizi, N. (2021). The effects of combination of Zingiber officinale and Echinacea on alleviation of clinical symptoms and hospitalization rate of suspected COVID-19 outpatients: a randomized controlled trial. Journal of complementary & integrative medicine, 18(4), 775–781. https://doi.org/10.1515/jcim-2020-0283

    Ntyonga-Pono M. P. (2020). COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment?. The Pan African medical journal, 35(2), 12. https://doi.org/10.11604/pamj.2020.35.2.22877

    Orisakwe, O. E., Orish, C. N., & Nwanaforo, E. O. (2020). Coronavirus disease (COVID-19) and Africa: Acclaimed home remedies. Scientific African, 10, e00620. https://doi.org/10.1016/j.sciaf.2020.e00620

    Ortiz, G. G., Pacheco-Moisés, F. P., Bitzer-Quintero, O. K., Ramírez-Anguiano, A. C., Flores-Alvarado, L. J., Ramírez-Ramírez, V., Macias-Islas, M. A., & Torres-Sánchez, E. D. (2013). Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clinical & developmental immunology, 2013, 708659. https://doi.org/10.1155/2013/708659

    Patwardhan, M., Morgan, M. T., Dia, V., & D'Souza, D. H. (2020). Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Food microbiology, 90, 103461. https://doi.org/10.1016/j.fm.2020.103461

    Pérez-Rosés, R., Risco, E., Vila, R., Peñalver, P., & Cañigueral, S. (2016). Biological and Nonbiological Antioxidant Activity of Some Essential Oils. Journal of agricultural and food chemistry, 64(23), 4716–4724. https://doi.org/10.1021/acs.jafc.6b00986

    Pratama, R. B., Berawi, K. N., & Islamy, N. (2021). Mikrobiota Usus dan Osteoartritis. Jurnal Ilmu Medis Indonesia, 1(1), 1-6. https://doi.org/10.35912/jimi.v1i1.279

    Shim, S., Kim, S., Choi, D. S., Kwon, Y. B., & Kwon, J. (2011). Anti-inflammatory effects of [6]-shogaol: potential roles of HDAC inhibition and HSP70 induction. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 49(11), 2734–2740. https://doi.org/10.1016/j.fct.2011.08.012

    Tabasum, F., & Ghosh, N. (2021). Reinventing employee morale during Covid Pandemic: Study of psychological contract and job satisfaction of healthcare professionals. International Journal of Financial, Accounting, and Management, 3(3), 259-274. https://doi.org/10.35912/ijfam.v3i3.596

    Vahdat Shariatpanahi, Z., Mokhtari, M., Taleban, F. A., Alavi, F., Salehi Surmaghi, M. H., Mehrabi, Y., & Shahbazi, S. (2013). Effect of enteral feeding with ginger extract in acute respiratory distress syndrome. Journal of critical care, 28(2), 217.e1–217.e2176. https://doi.org/10.1016/j.jcrc.2012.04.017

    van den Berg, D. F., & Te Velde, A. A. (2020). Severe COVID-19: NLRP3 Inflammasome Dysregulated. Frontiers in immunology, 11, 1580. https://doi.org/10.3389/fimmu.2020.01580

    Wannes, W. A., & Tounsi, M. S. (2020). Can medicinal plants contribute to the cure of Tunisian COVID-19 patients? Journal of Medicinal Plants Studies, 8 : 218-26. https://doi.org/10.22271/plants.2020.v8.i5c.1218

    Wang, J., Prinz, R. A., Liu, X., & Xu, X. (2020). In Vitro and In Vivo Antiviral Activity of Gingerenone A on Influenza A Virus Is Mediated by Targeting Janus Kinase 2. Viruses, 12(10), 1141. https://doi.org/10.3390/v12101141.

    Wang, M., Hao, H., Leeper, N. J., Zhu, L., & Early Career Committee (2018). Thrombotic Regulation From the Endothelial Cell Perspectives. Arteriosclerosis, thrombosis, and vascular biology, 38(6), 90–95. https://doi.org/10.1161/ATVBAHA.118.310367

    Wang, T., Fu, X., Chen, Q., Patra, J. K., Wang, D., Wang, Z., & Gai, Z. (2019). Arachidonic Acid Metabolism and Kidney Inflammation. International journal of molecular sciences, 20(15), 3683. https://doi.org/10.3390/ijms20153683

    Wee, M. K., Cabantog, J., Magpayo, D. D., Sabido, N. L., Samson, E., & David, P. (2021). Factors causing vaccine hesitancy among parents in Bulacan. Studies in Medicine and Public Health, 1(1), 15-29. https://doi.org/10.35912/simph.v1i1.715.

    Wen, Y., Liu, Y., Tang, T., Lv, L., Liu, H., Ma, K., & Liu, B. (2016). NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget, 7(34), 54290–54302. https://doi.org/10.18632/oncotarget.11091

    World Health Organization. (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19. https://www.who.int/dg/speeches/detail/ who-director-general-s-opening-remarks-at-themedia-briefing-on-covid-19---24-february-2020.

    World Health Organization. (2020). Coronavirus disease (COVID-19) Situation Report 22 May 2020. https://www.who.int/docs/defaultsource/coronaviruse/ situationreports/20200522- covid-19-sitrep-123.pdf?sfvrsn=5ad1bc3_4.

    Zhang, Y., Geng, X., Tan, Y., Li, Q., Xu, C., Xu, J., Hao, L., Zeng, Z., Luo, X., Liu, F., & Wang, H. (2020). New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomedicine & pharmacotherapy, 127, 110195. https://doi.org/10.1016/j.biopha.2020.110195

    Zhang, H., Luo, J., Alcorn, J. F., Chen, K., Fan, S., Pilewski, J., Liu, A., Chen, W., Kolls, J. K., & Wang, J. (2017). AIM2 Inflammasome Is Critical for Influenza-Induced Lung Injury and Mortality. Journal of immunology (Baltimore, Md. : 1950), 198(11), 4383–4393. https://doi.org/10.4049/jimmunol.1600714

  1. Abdel-Moneim, A., Morsy, B. M., Mahmoud, A. M., Abo-Seif, M. A., & Zanaty, M. I. (2013). Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI journal, 12, 943–955.
  2. Ahmad, A., Rehman, M. U., & Alkharfy, K. M. (2020). An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections. European review for medical and pharmacological sciences, 24(7), 4030–4034. https://doi.org/10.26355/eurrev_202004_20873
  3. Aldwihi, L. A., Khan, S. I., Alamri, F. F., AlRuthia, Y., Alqahtani, F., Fantoukh, O. I., Assiri, A., & Almohammed, O. A. (2021). Patients' Behavior Regarding Dietary or Herbal Supplements before and during COVID-19 in Saudi Arabia. International journal of environmental research and public health, 18(10), 5086. https://doi.org/10.3390/ijerph18105086
  4. Al-Nahain, A., Jahan, R., & Rahmatullah, M. (2014). Officinale Zingiber: A potential plant against rheumatoid arthritis. Arthritis, 159089. https://doi.org/10.1155/2014/159089.
  5. Awad, F., Assrawi, E., Louvrier, C., Jumeau, C., Georgin-Lavialle, S., Grateau, G., Amselem, S., Giurgea, I., & Karabina, S. A. (2018). Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & therapeutics, 187, 133–149. https://doi.org/10.1016/j.pharmthera.2018.02.011
  6. Azam, M.N., Al Mahamud, R., Hasan, A., & Jahan, R. (2020). Some home remedies used for treatment of COVID-19 in Bangladesh. Journal Medoicine Plants Studies, 8(4):27-32.
  7. Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology, 39(5), 529–539. https://doi.org/10.1007/s00281-017-0629-x
  8. Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of ethnopharmacology, 145(1), 146–151. https://doi.org/10.1016/j.jep.2012.10.043
  9. Chen, X., & Yu, J. (2019). Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation (P06-072-19). Current Developments in Nutrition, 3(1), nzz031.P06-072-19. https://doi.org/10.1093/cdn/nzz031.P06-072-19.
  10. Choi, J. G., Kim, S. Y., Jeong, M., & Oh, M. S. (2018). Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacology & therapeutics, 182, 56–69. https://doi.org/10.1016/j.pharmthera.2017.08.010
  11. Cicco, S., Cicco, G., Racanelli, V., & Vacca, A. (2020). Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators of inflammation, 7527953. https://doi.org/10.1155/2020/7527953
  12. Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., & Kritas, S. K. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. Journal of biological regulators and homeostatic agents, 34(2), 327–331. https://doi.org/10.23812/CONTI-E
  13. Ezzat, S. M., Ezzat, M. I., Okba, M. M., Menze, E. T., & Abdel-Naim, A. B. (2018). The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. Journal of ethnopharmacology, 214, 113–123. https://doi.org/10.1016/j.jep.2017.12.019
  14. FitzGerald G. A. (2020). Misguided drug advice for COVID-19. Science (New York, N.Y.), 367(6485), 1434. https://doi.org/10.1126/science.abb8034
  15. Freeman, T. L., & Swartz, T. H. (2020). Targeting the NLRP3 Inflammasome in Severe COVID-19. Frontiers in immunology, 11, 1518. https://doi.org/10.3389/fimmu.2020.01518
  16. Ghebremedhin, A., Salam, A. B., Adu-Addai, B., Noonan, S., Stratton, R., Ahmed, M., Khantwal, C., Martin, G. R., Lin, H., Andrews, C., Karanam, B., Rudloff, U., Lopez, H., Jaynes, J., & Yates, C. (2020). A Novel CD206 Targeting Peptide Inhibits Bleomycin Induced Pulmonary Fibrosis in Mice. bioRxiv : the preprint server for biology, 2020.07.27.218115.https://doi.org/10.1101/2020.07.27.218115
  17. Gil, L., Hernández, R. G., Delgado-Roche, L., & Fernández, O. S. L. (2015). Oxidative Stress in the Aging Process: Fundamental Aspects and New Insights. 10.1021/bk-2015-1200.ch006.
  18. Guan, W. J., & Zhong, N. S. (2020). Clinical Characteristics of Covid-19 in China. Reply. The New England journal of medicine, 382(19), 1861–1862. https://doi.org/10.1056/NEJMc2005203
  19. Hoxha M. (2020). What about COVID-19 and arachidonic acid pathway?. European journal of clinical pharmacology, 76(11), 1501–1504. https://doi.org/10.1007/s00228-020-02941-w
  20. Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S., & Nemati, M. (2020). Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life sciences, 257, 118102. https://doi.org/10.1016/j.lfs.2020.118102
  21. Jafarzadeh, A., & Nemati, M. (2018). Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. Journal of neuroimmunology, 324, 54–75. https://doi.org/10.1016/j.jneuroim.2018.09.003
  22. Jafarzadeh, A., Nemati, M., Khorramdelazad, H., & Mirshafiey, A. (2019). The Toll-like Receptor 2 (TLR2)-related Immunopathological Responses in the Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Iranian journal of allergy, asthma, and immunology, 18(3), 230–250. https://doi.org/10.18502/ijaai.v18i3.1117
  23. Jamilloux, Y., Henry, T., Belot, A., Viel, S., Fauter, M., El Jammal, T., Walzer, T., François, B., & Sève, P. (2020). Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmunity reviews, 19(7), 102567. https://doi.org/10.1016/j.autrev.2020.102567
  24. Khan, A. M., Shahzad, M., Raza Asim, M. B., Imran, M., & Shabbir, A. (2015). Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharmaceutical biology, 53(3), 359–367. https://doi.org/10.3109/13880209.2014.920396
  25. Khomich, O. A., Kochetkov, S. N., Bartosch, B., & Ivanov, A. V. (2018). Redox Biology of Respiratory Viral Infections. Viruses, 10(8), 392. https://doi.org/10.3390/v10080392
  26. Kim, Y., Kim, D. M., & Kim, J. Y. (2017). Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators. Journal of food science, 82(5), 1264–1270. https://doi.org/10.1111/1750-3841.13695
  27. Kim, Y. G., Kim, M. O., Kim, S. H., Kim, H. J., Pokhrel, N. K., Lee, J. H., Lee, H. J., Kim, J. Y., & Lee, Y. (2020). 6-Shogaol, an active ingredient of ginger, inhibits osteoclastogenesis and alveolar bone resorption in ligature-induced periodontitis in mice. Journal of periodontology, 91(6), 809–818. https://doi.org/10.1002/JPER.19-0228
  28. Kiyama R. (2020). Nutritional implications of ginger: chemistry, biological activities and signaling pathways. The Journal of nutritional biochemistry, 86, 108486. https://doi.org/10.1016/j.jnutbio.2020.108486
  29. Mahluji, S., Ostadrahimi, A., Mobasseri, M., Ebrahimzade Attari, V., & Payahoo, L. (2013). Anti-inflammatory effects of zingiber officinale in type 2 diabetic patients. Advanced pharmaceutical bulletin, 3(2), 273–276. https://doi.org/10.5681/apb.2013.044
  30. Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods (Basel, Switzerland), 8(6), 185. https://doi.org/10.3390/foods8060185
  31. Masykur, F. abdul. (2022). Hubungan Antara Lama Demam dengan Hasil Pemeriksaan Profil Darah pada Pasien Demam Berdarah Dengue . Jurnal Ilmu Medis Indonesia, 1(2), 53-58. https://doi.org/10.35912/jimi.v1i2.912
  32. Mesri, M., Esmaeili Saber, S. S., Godazi, M., Roustaei Shirdel, A., Montazer, R., Koohestani, H. ., Baghcheghi, N., Karimy, M., & Azizi, N. (2021). The effects of combination of Zingiber officinale and Echinacea on alleviation of clinical symptoms and hospitalization rate of suspected COVID-19 outpatients: a randomized controlled trial. Journal of complementary & integrative medicine, 18(4), 775–781. https://doi.org/10.1515/jcim-2020-0283
  33. Ntyonga-Pono M. P. (2020). COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment?. The Pan African medical journal, 35(2), 12. https://doi.org/10.11604/pamj.2020.35.2.22877
  34. Orisakwe, O. E., Orish, C. N., & Nwanaforo, E. O. (2020). Coronavirus disease (COVID-19) and Africa: Acclaimed home remedies. Scientific African, 10, e00620. https://doi.org/10.1016/j.sciaf.2020.e00620
  35. Ortiz, G. G., Pacheco-Moisés, F. P., Bitzer-Quintero, O. K., Ramírez-Anguiano, A. C., Flores-Alvarado, L. J., Ramírez-Ramírez, V., Macias-Islas, M. A., & Torres-Sánchez, E. D. (2013). Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clinical & developmental immunology, 2013, 708659. https://doi.org/10.1155/2013/708659
  36. Patwardhan, M., Morgan, M. T., Dia, V., & D'Souza, D. H. (2020). Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Food microbiology, 90, 103461. https://doi.org/10.1016/j.fm.2020.103461
  37. Pérez-Rosés, R., Risco, E., Vila, R., Peñalver, P., & Cañigueral, S. (2016). Biological and Nonbiological Antioxidant Activity of Some Essential Oils. Journal of agricultural and food chemistry, 64(23), 4716–4724. https://doi.org/10.1021/acs.jafc.6b00986
  38. Pratama, R. B., Berawi, K. N., & Islamy, N. (2021). Mikrobiota Usus dan Osteoartritis. Jurnal Ilmu Medis Indonesia, 1(1), 1-6. https://doi.org/10.35912/jimi.v1i1.279
  39. Shim, S., Kim, S., Choi, D. S., Kwon, Y. B., & Kwon, J. (2011). Anti-inflammatory effects of [6]-shogaol: potential roles of HDAC inhibition and HSP70 induction. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 49(11), 2734–2740. https://doi.org/10.1016/j.fct.2011.08.012
  40. Tabasum, F., & Ghosh, N. (2021). Reinventing employee morale during Covid Pandemic: Study of psychological contract and job satisfaction of healthcare professionals. International Journal of Financial, Accounting, and Management, 3(3), 259-274. https://doi.org/10.35912/ijfam.v3i3.596
  41. Vahdat Shariatpanahi, Z., Mokhtari, M., Taleban, F. A., Alavi, F., Salehi Surmaghi, M. H., Mehrabi, Y., & Shahbazi, S. (2013). Effect of enteral feeding with ginger extract in acute respiratory distress syndrome. Journal of critical care, 28(2), 217.e1–217.e2176. https://doi.org/10.1016/j.jcrc.2012.04.017
  42. van den Berg, D. F., & Te Velde, A. A. (2020). Severe COVID-19: NLRP3 Inflammasome Dysregulated. Frontiers in immunology, 11, 1580. https://doi.org/10.3389/fimmu.2020.01580
  43. Wannes, W. A., & Tounsi, M. S. (2020). Can medicinal plants contribute to the cure of Tunisian COVID-19 patients? Journal of Medicinal Plants Studies, 8 : 218-26. https://doi.org/10.22271/plants.2020.v8.i5c.1218
  44. Wang, J., Prinz, R. A., Liu, X., & Xu, X. (2020). In Vitro and In Vivo Antiviral Activity of Gingerenone A on Influenza A Virus Is Mediated by Targeting Janus Kinase 2. Viruses, 12(10), 1141. https://doi.org/10.3390/v12101141.
  45. Wang, M., Hao, H., Leeper, N. J., Zhu, L., & Early Career Committee (2018). Thrombotic Regulation From the Endothelial Cell Perspectives. Arteriosclerosis, thrombosis, and vascular biology, 38(6), 90–95. https://doi.org/10.1161/ATVBAHA.118.310367
  46. Wang, T., Fu, X., Chen, Q., Patra, J. K., Wang, D., Wang, Z., & Gai, Z. (2019). Arachidonic Acid Metabolism and Kidney Inflammation. International journal of molecular sciences, 20(15), 3683. https://doi.org/10.3390/ijms20153683
  47. Wee, M. K., Cabantog, J., Magpayo, D. D., Sabido, N. L., Samson, E., & David, P. (2021). Factors causing vaccine hesitancy among parents in Bulacan. Studies in Medicine and Public Health, 1(1), 15-29. https://doi.org/10.35912/simph.v1i1.715.
  48. Wen, Y., Liu, Y., Tang, T., Lv, L., Liu, H., Ma, K., & Liu, B. (2016). NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget, 7(34), 54290–54302. https://doi.org/10.18632/oncotarget.11091
  49. World Health Organization. (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19. https://www.who.int/dg/speeches/detail/ who-director-general-s-opening-remarks-at-themedia-briefing-on-covid-19---24-february-2020.
  50. World Health Organization. (2020). Coronavirus disease (COVID-19) Situation Report 22 May 2020. https://www.who.int/docs/defaultsource/coronaviruse/ situationreports/20200522- covid-19-sitrep-123.pdf?sfvrsn=5ad1bc3_4.
  51. Zhang, Y., Geng, X., Tan, Y., Li, Q., Xu, C., Xu, J., Hao, L., Zeng, Z., Luo, X., Liu, F., & Wang, H. (2020). New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomedicine & pharmacotherapy, 127, 110195. https://doi.org/10.1016/j.biopha.2020.110195
  52. Zhang, H., Luo, J., Alcorn, J. F., Chen, K., Fan, S., Pilewski, J., Liu, A., Chen, W., Kolls, J. K., & Wang, J. (2017). AIM2 Inflammasome Is Critical for Influenza-Induced Lung Injury and Mortality. Journal of immunology (Baltimore, Md. : 1950), 198(11), 4383–4393. https://doi.org/10.4049/jimmunol.1600714