Peran Sekuens Genom Mitokondria dan Susunan Gen Sarcoptes Scabiei terhadap Karakterisasi Genetik Pasien Terinfestasi Skabies

Published: Jul 10, 2024

Abstract:

Purpose: The aim of writing this article is to examine the draft genome of S. scabiei from a number of published articles

Research methodology: This article reviews scabies genome sequencing, which may provide the necessary facilities to investigate the many unknowns associated with the survival of scabies mites.

Results: Scabies genome sequencing investigated many unknowns related to scabies mite survival, reproduction, and host-parasite interactions and may facilitate studies in the areas of developing scabies diagnostic tests, new treatments, and vaccines to protect against this disease.

Limitations: From the results of sequencing, assembly, and annotation of the scabies mite mitochondrial genome, the experts identified SNPs in several isolates from patients and laboratory pig models and inferred the haplotype structure and diversity of individual infections.

Contribution: The results of multi-locus studies in a number of countries indicate that different varieties of Sarcoptes mites originate from different host species and geographic regions and recommend a common gene pool of S. scabiei that represents the existence of a single species.

Keywords:
1. infectious disease
2. parasitology
3. neglected tropical disease
4. Scabies
5. genetic
Authors:
1 . Reqgi First Trasia
2 . Samsul Mustofa
3 . Endang Purwaningsih
4 . Sri Wahyu Herlinawati
How to Cite
Trasia, R. F., Mustofa, S., Purwaningsih, E., & Herlinawati, S. W. (2024). Peran Sekuens Genom Mitokondria dan Susunan Gen Sarcoptes Scabiei terhadap Karakterisasi Genetik Pasien Terinfestasi Skabies . Jurnal Ilmu Medis Indonesia, 3(2), 81–91. https://doi.org/10.35912/jimi.v3i2.3110

Downloads

Download data is not yet available.
Issue & Section
References

    Bergstrom, F. C., Reynolds, S., Johnstone, M., Pike, R. N., Buckle, A. M., Kemp, D. J., et al. (2009). Scabies mite inactivated serine protease paralogs inhibit the human complement system. The Journal of Immunology, 182(12), 7809-7817.

    Chaisiri, K., McGarry, J. W., Morand, S., & Makepeace, B. L. (2015). Symbiosis in an overlooked microcosm: a systematic review of the bacterial flora of mites. Parasitology, 142(9), 1152-1162.

    Klimov, P. B., & OConnor, B. (2013). Is permanent parasitism reversible?—Critical evidence from early evolution of house dust mites. Systematic biology, 62(3), 411-423.

    Makouloutou, P., Suzuki, K., Yokoyama, M., Takeuchi, M., Yanagida, T., & Sato, H. (2015). Involvement of two genetic lineages of Sarcoptes scabiei mites in a local mange epizootic of wild mammals in Japan. Journal of Wildlife Diseases, 51(1), 69-78.

    Mofiz, E., Seemann, T., Bahlo, M., Holt, D., Currie, B. J., Fischer, K., et al. (2016). Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Neglected Tropical Diseases, 10(2), e0004384.

    Morgan, M. S., Arlian, L. G., & Markey, M. P. (2013). Sarcoptes scabiei mites modulate gene expression in human skin equivalents. PLoS One, 8(8), e71143.

    Naessens, E., Dubreuil, G., Giordanengo, P., Baron, O. L., Minet-Kebdani, N., Keller, H., et al. (2015). A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Current Biology, 25(14), 1898-1903.

    Naz, S., Chaudhry, F. R., Rizvi, D. A., & Ismail, M. (2018). Genetic characterization of Sarcoptes scabiei var. hominis from scabies patients in Pakistan. Trop Biomed, 35(3), 796-803.

    Oleaga, A., Alasaad, S., Rossi, L., Casais, R., Vicente, J., Maione, S., et al. (2013). Genetic epidemiology of Sarcoptes scabiei in the Iberian wolf in Asturias, Spain. Veterinary parasitology, 196(3-4), 453-459.

    Renteria-Solis, Z., Min, A., Alasaad, S., Müller, K., Michler, F. U., Schmäschke, R., et al. (2014). Genetic epidemiology and pathology of raccoon?derived Sarcoptes mites from urban areas of G ermany. Medical and veterinary entomology, 28(S1), 98-103.

    Reynolds, S. L., Pike, R. N., Mika, A., Blom, A. M., Hofmann, A., Wijeyewickrema, L. C., et al. (2014). Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS neglected tropical diseases, 8(5), e2872.

    Ribeiro, J. M., Anderson, J. M., Manoukis, N. C., Meng, Z., & Francischetti, I. M. (2011). A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC genomics, 12, 1-11.

    Rider, S. D., Morgan, M. S., & Arlian, L. G. (2015). Draft genome of the scabies mite. Parasites & vectors, 8, 1-14.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212.

    Thomas, J., Peterson, G. M., Walton, S. F., Carson, C. F., Naunton, M., & Baby, K. E. (2015). Scabies: an ancient global disease with a need for new therapies. BMC infectious diseases, 15, 1-6.

    Thomas, W. R. (2015). Hierarchy and molecular properties of house dust mite allergens. Allergology International, 64(4), 304-311.

    Trasia, R. F. (2024). Dampak Penyakit Infeksi Parasit terhadap Status Gizi. Jurnal Ilmu Medis Indonesia, 3(2), 75-80.

    Zhang, Z.-Q. (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness: Magnolia press.

    Zhao, Y., Cao, Z., Cheng, J., Hu, L., Ma, J., Yang, Y., et al. (2015). Population identification of Sarcoptes hominis and Sarcoptes canis in China using DNA sequences. Parasitology research, 114, 1001-1010.

  1. Bergstrom, F. C., Reynolds, S., Johnstone, M., Pike, R. N., Buckle, A. M., Kemp, D. J., et al. (2009). Scabies mite inactivated serine protease paralogs inhibit the human complement system. The Journal of Immunology, 182(12), 7809-7817.
  2. Chaisiri, K., McGarry, J. W., Morand, S., & Makepeace, B. L. (2015). Symbiosis in an overlooked microcosm: a systematic review of the bacterial flora of mites. Parasitology, 142(9), 1152-1162.
  3. Klimov, P. B., & OConnor, B. (2013). Is permanent parasitism reversible?—Critical evidence from early evolution of house dust mites. Systematic biology, 62(3), 411-423.
  4. Makouloutou, P., Suzuki, K., Yokoyama, M., Takeuchi, M., Yanagida, T., & Sato, H. (2015). Involvement of two genetic lineages of Sarcoptes scabiei mites in a local mange epizootic of wild mammals in Japan. Journal of Wildlife Diseases, 51(1), 69-78.
  5. Mofiz, E., Seemann, T., Bahlo, M., Holt, D., Currie, B. J., Fischer, K., et al. (2016). Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Neglected Tropical Diseases, 10(2), e0004384.
  6. Morgan, M. S., Arlian, L. G., & Markey, M. P. (2013). Sarcoptes scabiei mites modulate gene expression in human skin equivalents. PLoS One, 8(8), e71143.
  7. Naessens, E., Dubreuil, G., Giordanengo, P., Baron, O. L., Minet-Kebdani, N., Keller, H., et al. (2015). A secreted MIF cytokine enables aphid feeding and represses plant immune responses. Current Biology, 25(14), 1898-1903.
  8. Naz, S., Chaudhry, F. R., Rizvi, D. A., & Ismail, M. (2018). Genetic characterization of Sarcoptes scabiei var. hominis from scabies patients in Pakistan. Trop Biomed, 35(3), 796-803.
  9. Oleaga, A., Alasaad, S., Rossi, L., Casais, R., Vicente, J., Maione, S., et al. (2013). Genetic epidemiology of Sarcoptes scabiei in the Iberian wolf in Asturias, Spain. Veterinary parasitology, 196(3-4), 453-459.
  10. Renteria-Solis, Z., Min, A., Alasaad, S., Müller, K., Michler, F. U., Schmäschke, R., et al. (2014). Genetic epidemiology and pathology of raccoon?derived Sarcoptes mites from urban areas of G ermany. Medical and veterinary entomology, 28(S1), 98-103.
  11. Reynolds, S. L., Pike, R. N., Mika, A., Blom, A. M., Hofmann, A., Wijeyewickrema, L. C., et al. (2014). Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS neglected tropical diseases, 8(5), e2872.
  12. Ribeiro, J. M., Anderson, J. M., Manoukis, N. C., Meng, Z., & Francischetti, I. M. (2011). A further insight into the sialome of the tropical bont tick, Amblyomma variegatum. BMC genomics, 12, 1-11.
  13. Rider, S. D., Morgan, M. S., & Arlian, L. G. (2015). Draft genome of the scabies mite. Parasites & vectors, 8, 1-14.
  14. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212.
  15. Thomas, J., Peterson, G. M., Walton, S. F., Carson, C. F., Naunton, M., & Baby, K. E. (2015). Scabies: an ancient global disease with a need for new therapies. BMC infectious diseases, 15, 1-6.
  16. Thomas, W. R. (2015). Hierarchy and molecular properties of house dust mite allergens. Allergology International, 64(4), 304-311.
  17. Trasia, R. F. (2024). Dampak Penyakit Infeksi Parasit terhadap Status Gizi. Jurnal Ilmu Medis Indonesia, 3(2), 75-80.
  18. Zhang, Z.-Q. (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness: Magnolia press.
  19. Zhao, Y., Cao, Z., Cheng, J., Hu, L., Ma, J., Yang, Y., et al. (2015). Population identification of Sarcoptes hominis and Sarcoptes canis in China using DNA sequences. Parasitology research, 114, 1001-1010.