Mathematical Design of Shell-and-Tube Heat Exchanger for MEK Production

Published: Feb 24, 2025

Abstract:

Purpose: This study aims to analyse and develop design a heat exchanger (HE) for the production of Methyl Ethyl Ketone (MEK) which will be compiled into a computational program for the design of shell-tube type HE.

Methodology: The problem with this HE is that the temperature of 2-butanol is 30?C from the storage tank. While the HE reactor requires a temperature of 99.6?C, HE plays a role in increasing the temperature from 30?C to 99.6?C. To be more energy efficient, researchers used heat of the product, MEK. Which is where to exchange heat from the product to the reactants. The design of a shell-tube two-pass exchanger with a working fluid in the form of 2-butanol as a hot fluid with water as a cold fluid.

Results: Thus, HE with shell and tube doesn’t meet the requirements and standards of TEMA. Although the shell and tube type of HE doesn’t conform to the criteria and standards specified in industrial applications, the analysis can be used as a learning tool for the design process, heme performance analysis, and operating mechanism of the HE.

Limitations: This research is focused on developing HE designs for the production of MEK.

Contribution: This research can provide a reference for designing HE in industrial development.

Conclusion: The designed shell-and-tube heat exchanger shows limited efficiency and does not comply with TEMA industrial standards. However, the study provides valuable insights into the design methodology and serves as a foundation for further optimization of heat exchanger systems to enhance performance, efficiency, and industrial applicability.

Keywords:
1. Education
2. Effectiveness
3. Heat Exchanger
4. Methyl Ethyl Ketone
5. Shell-Tube
Authors:
1 . Vizny Grace Irene Damanik
2 . Asep Bayu Dani Nandiyanto
3 . Teguh Kurniawan
How to Cite
Damanik, V. G. I. ., Nandiyanto, A. B. D. ., & Kurniawan, T. . (2025). Mathematical Design of Shell-and-Tube Heat Exchanger for MEK Production. Jurnal Pemberdayaan Umat, 4(1), 47–58. https://doi.org/10.35912/jpu.v4i1.5621

Downloads

Download data is not yet available.
Issue & Section
References

    Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. a. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137. doi:http://dx.doi.org/10.28991/ESJ-2022-06-01-010

    Banuwa, A., & Susanti, A. N. (2021). Analisis kebutuhan pelatihan ASN Penyuluh Keluarga Berencana (PKB) di provinsi Lampung. Jurnal Ilmiah Widyaiswara, 1(1), 35-43. doi: https://doi.org/10.35912/jiw.v1i1.240

    Chadwick, S. S. (1988). Ullmann's encyclopedia of industrial chemistry. Reference Services Review.

    Chalimah, S., Maulana, I., Setyobudi, R., Sandrina, A., Anggoro, R., Buana, E., . . . Alhalim, M. A. (2024). Analysis of Efficiency and Heat Transfer Coefficient in the Performance Evaluation of Shell and Tube Heat Exchanger. BIOMEJ, 4, 1-9. doi:https://doi.org/10.33005/biomej.v4i2.129

    Costa, A. L., & Queiroz, E. M. (2008). Design optimization of shell-and-tube heat exchangers. Applied thermal engineering, 28(14-15), 1798-1805. doi:https://doi.org/10.1016/j.applthermaleng.2007.11.009

    Gawande, S. H., Wankhede, S. D., Yerrawar, R. N., Sonawane, V. J., & Ubarhande, U. B. (2012a). Design and development of shell & tube heat exchanger for beverage. Modern Mechanical Engineering, 2(4), 121-125. doi:http://dx.doi.org/10.4236/mme.2012.24015

    Gawande, S. H., Wankhede, S. D., Yerrawar, R. N., Sonawane, V. J., & Ubarhande, U. B. (2012b). Design and development of shell & tube heat exchanger for beverage.

    Grace, V., Nandiyanto, A., & Kurniawan, T. (2022). Design Heat Exchanger Type Shell-Tube Mathematically With 2-Butanol Hot Fluid and Cold Fluid Steam for the Production of MEK. Jurnal Ilmiah Widyaiswara, 2, 1-11. doi:https://doi.org/10.35912/jiw.v2i1.1777

    Granados-Ortiz, F.-J., & Ortega-Casanova, J. (2020). Mechanical characterisation and analysis of a passive micro heat exchanger. Micromachines, 11(7), 668. doi:https://doi.org/10.3390/mi11070668

    Ham, J., Kim, E., You, N., & Cho, H. (2023). Comparison of thermal performance in solution heat exchangers with different chevron angles in absorption system. Case Studies in Thermal Engineering, 51, 103598. doi:https://doi.org/10.1016/j.csite.2023.103598

    Harisasono, T. Y., & Sunitiyoso, Y. The Road towards a Resilient Base Petrochemical Industry in Indonesia: A Transformative Scenario Planning Approach. doi:https://doi.org/10.47191/ijcsrr/V5-i12-22

    Keuler, J. N., Lorenzen, L., & Miachon, S. (2001). The dehydrogenation of 2-butanol over copper-based catalysts: Optimising catalyst composition and determining kinetic parameters. Applied Catalysis A: General, 218, 171-180. doi:https://doi.org/10.1016/S0926-860X(01)00639-1

    Kolios, G., Gritsch, A., Glöckler, B., & Eigenberger, G. (2005). Enhancing Productivity and Thermal Efficiency of High?Temperature Endothermic Processes in Heat?Integrated Fixed?Bed Reactors. Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control, 1-43. doi:https://doi.org/10.1002/3527605738

    Krisdiyanto, K., Fikri, M., Adi, R., & Nugroho, A. (2021). Stress Analysis on Tubesheet Referring to TEMA Standard. JMPM (Jurnal Material dan Proses Manufaktur), 5, 52-57. doi:https://doi.org/10.18196/jmpm.v5i1.12340

    Kristiana, L., & Manurung, A. (2021). An Energy Balance Model for a Small Educational Thermal Device. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(2), 333-343.

    Luttrell, W. E., & Bellcock, L. R. (2015). Methyl ethyl ketone. Journal of Chemical Health and Safety, 22(4), 33-36. doi:https://doi.org/10.1016/j.jchas.2015.06.007

    Machmud, A., Nandiyanto, A., & Dirgantari, P. (2018). Technical efficiency chemical industry in indonesia: Stochastic frontier analysis (SFA) approach. Pertanika Journal of Science and Technology, 26, 1453-1464.

    Morris, M. (2011). Mechanical Design of Heat Exchangers Thermopedia: Begel House Inc.

    Muhammad, I., & Yulianto, S. (2018). REDESIGN PLATE HEAT EXCHANGER PADA CLOSED COOLING WATER SYSTEM PLTGU KAPASITAS 740 MW. Prosiding Semnastek.

    Nuraeni, A. H. (2022). Simplified Analysis of Environmental Permits Integrated through OSS (Online Single Submission). Jurnal Ilmiah Widyaiswara, 1(1), 45-54. doi: https://doi.org/10.35912/jiw.v1i1.678

    Prasad, A. K., & Anand, K. (2020). Design and analysis of shell and tube type heat exchanger. Int. J. Eng. Res. Technol., 524-539.

    Purnamasari, H. N., Kurniawan, T., & Nandiyanto, A. B. D. (2021). DESIGN OF SHELL AND TUBE TYPE HEAT EXCHANGER FOR NANOFIBRIL CELLULOSE PRODUCTION PROCESS. International Journal of Research and Applied Technology (INJURATECH), 1(2), 318-329.

    Putra, I. (2017). Studi perhitungan heat exchanger type shell and tube dehumidifier biogas limbah sawit untuk pembangkit listrik tenaga biogas. Jurnal Polimesin, 15(2), 42-49.

    SEPTIAN, B., Rey, P. D., & AZIZ, A. (2021). Desain dan rancang bangun alat penukar kalor (heat exchanger) jenis shell dan tube. Baut dan Manufaktur, 3(01), 52-60.

    Shen, M.-X., Deng, C.-Q., Yang, J., & Deng, J. (2024). Preparation of methyl ethyl ketone from biomass-derived levulinic acid using a metal-free photocatalytic system and life cycle assessment study. Green Chemistry, 26(19), 10290-10298. doi:https://doi.org/10.1039/D4GC02798A

    Steinhäuser, K. G., & Große Ophoff, M. (2025). The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry. Sustainable Chemistry, 6(2), 16. doi:https://doi.org/10.3390/suschem6020016

    Sylvia, E., & Sunitiyoso, Y. (2024). A system dynamic model for Indonesian petrochemical industry emission reduction. International Journal of Energy Sector Management, 18(1), 1-25. doi:https://doi.org/10.1108/IJESM-07-2022-0006

    Taware, M., Patil, D., & Arakerimath, R. (2017). Design, Fabrication and Testing of Shell and Tube Heat Exchanger for Heat Recovery from Hydraulic Oil. International Journal of Engineering Research and, V6. doi:https://doi.org/10.17577/IJERTV6IS070289

    Veriyawan, R., Biyanto, T., & Nugroho, G. (2014). Optimasi Desain Heat Exchanger Shell-And-Tube Menggunakan Metode Particle Swarm Optimization. Jurnal Institut Teknologi Sepuluh Nopember (ITS), Surabaya.

    Vuki?, M., Tomi?, M., Živkovi?, P., & Ili?, G. (2014). Effect of segmental baffles on the shell-and-tube heat exchanger effectiveness. Hemijska industrija, 68, 171-177. doi:https://doi.org/10.2298/HEMIND130127041V

    Wicaksono, C., Wijanarko, E., Simanullang, O. H., & Tahad, A. (2018). Perancangan Eco Heat Exchanger Type 1-2 Shell And Tube dan Pengaruh Jumlah Baffle Terhadap Transfer Panas. Jurnal Chemurgy, 1(1), 27-30.

    Wuryanti, S., Hudalil, A., & Nugrahaeni, I. (2021). Gambaran kompetensi Widyaiswara dalam mengelola pembelajaran di Pusat Pendidikan dan Pelatihan Kesejahteraan Sosial Kementerian Sosial. Jurnal Ilmiah Widyaiswara, 1(1), 27-34. doi: https://doi.org/10.35912/jiw.v1i1.233

    Yang, J., Fan, A., Liu, W., & Jacobi, A. M. (2014). Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory. Energy conversion and management, 78, 468-476. doi:https://doi.org/10.1016/j.enconman.2013.11.008

    Zohuri, B. (2017). Compact heat exchangers: Springer.

  1. Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. a. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128-137. doi:http://dx.doi.org/10.28991/ESJ-2022-06-01-010
  2. Banuwa, A., & Susanti, A. N. (2021). Analisis kebutuhan pelatihan ASN Penyuluh Keluarga Berencana (PKB) di provinsi Lampung. Jurnal Ilmiah Widyaiswara, 1(1), 35-43. doi: https://doi.org/10.35912/jiw.v1i1.240
  3. Chadwick, S. S. (1988). Ullmann's encyclopedia of industrial chemistry. Reference Services Review.
  4. Chalimah, S., Maulana, I., Setyobudi, R., Sandrina, A., Anggoro, R., Buana, E., . . . Alhalim, M. A. (2024). Analysis of Efficiency and Heat Transfer Coefficient in the Performance Evaluation of Shell and Tube Heat Exchanger. BIOMEJ, 4, 1-9. doi:https://doi.org/10.33005/biomej.v4i2.129
  5. Costa, A. L., & Queiroz, E. M. (2008). Design optimization of shell-and-tube heat exchangers. Applied thermal engineering, 28(14-15), 1798-1805. doi:https://doi.org/10.1016/j.applthermaleng.2007.11.009
  6. Gawande, S. H., Wankhede, S. D., Yerrawar, R. N., Sonawane, V. J., & Ubarhande, U. B. (2012a). Design and development of shell & tube heat exchanger for beverage. Modern Mechanical Engineering, 2(4), 121-125. doi:http://dx.doi.org/10.4236/mme.2012.24015
  7. Gawande, S. H., Wankhede, S. D., Yerrawar, R. N., Sonawane, V. J., & Ubarhande, U. B. (2012b). Design and development of shell & tube heat exchanger for beverage.
  8. Grace, V., Nandiyanto, A., & Kurniawan, T. (2022). Design Heat Exchanger Type Shell-Tube Mathematically With 2-Butanol Hot Fluid and Cold Fluid Steam for the Production of MEK. Jurnal Ilmiah Widyaiswara, 2, 1-11. doi:https://doi.org/10.35912/jiw.v2i1.1777
  9. Granados-Ortiz, F.-J., & Ortega-Casanova, J. (2020). Mechanical characterisation and analysis of a passive micro heat exchanger. Micromachines, 11(7), 668. doi:https://doi.org/10.3390/mi11070668
  10. Ham, J., Kim, E., You, N., & Cho, H. (2023). Comparison of thermal performance in solution heat exchangers with different chevron angles in absorption system. Case Studies in Thermal Engineering, 51, 103598. doi:https://doi.org/10.1016/j.csite.2023.103598
  11. Harisasono, T. Y., & Sunitiyoso, Y. The Road towards a Resilient Base Petrochemical Industry in Indonesia: A Transformative Scenario Planning Approach. doi:https://doi.org/10.47191/ijcsrr/V5-i12-22
  12. Keuler, J. N., Lorenzen, L., & Miachon, S. (2001). The dehydrogenation of 2-butanol over copper-based catalysts: Optimising catalyst composition and determining kinetic parameters. Applied Catalysis A: General, 218, 171-180. doi:https://doi.org/10.1016/S0926-860X(01)00639-1
  13. Kolios, G., Gritsch, A., Glöckler, B., & Eigenberger, G. (2005). Enhancing Productivity and Thermal Efficiency of High?Temperature Endothermic Processes in Heat?Integrated Fixed?Bed Reactors. Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control, 1-43. doi:https://doi.org/10.1002/3527605738
  14. Krisdiyanto, K., Fikri, M., Adi, R., & Nugroho, A. (2021). Stress Analysis on Tubesheet Referring to TEMA Standard. JMPM (Jurnal Material dan Proses Manufaktur), 5, 52-57. doi:https://doi.org/10.18196/jmpm.v5i1.12340
  15. Kristiana, L., & Manurung, A. (2021). An Energy Balance Model for a Small Educational Thermal Device. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(2), 333-343.
  16. Luttrell, W. E., & Bellcock, L. R. (2015). Methyl ethyl ketone. Journal of Chemical Health and Safety, 22(4), 33-36. doi:https://doi.org/10.1016/j.jchas.2015.06.007
  17. Machmud, A., Nandiyanto, A., & Dirgantari, P. (2018). Technical efficiency chemical industry in indonesia: Stochastic frontier analysis (SFA) approach. Pertanika Journal of Science and Technology, 26, 1453-1464.
  18. Morris, M. (2011). Mechanical Design of Heat Exchangers Thermopedia: Begel House Inc.
  19. Muhammad, I., & Yulianto, S. (2018). REDESIGN PLATE HEAT EXCHANGER PADA CLOSED COOLING WATER SYSTEM PLTGU KAPASITAS 740 MW. Prosiding Semnastek.
  20. Nuraeni, A. H. (2022). Simplified Analysis of Environmental Permits Integrated through OSS (Online Single Submission). Jurnal Ilmiah Widyaiswara, 1(1), 45-54. doi: https://doi.org/10.35912/jiw.v1i1.678
  21. Prasad, A. K., & Anand, K. (2020). Design and analysis of shell and tube type heat exchanger. Int. J. Eng. Res. Technol., 524-539.
  22. Purnamasari, H. N., Kurniawan, T., & Nandiyanto, A. B. D. (2021). DESIGN OF SHELL AND TUBE TYPE HEAT EXCHANGER FOR NANOFIBRIL CELLULOSE PRODUCTION PROCESS. International Journal of Research and Applied Technology (INJURATECH), 1(2), 318-329.
  23. Putra, I. (2017). Studi perhitungan heat exchanger type shell and tube dehumidifier biogas limbah sawit untuk pembangkit listrik tenaga biogas. Jurnal Polimesin, 15(2), 42-49.
  24. SEPTIAN, B., Rey, P. D., & AZIZ, A. (2021). Desain dan rancang bangun alat penukar kalor (heat exchanger) jenis shell dan tube. Baut dan Manufaktur, 3(01), 52-60.
  25. Shen, M.-X., Deng, C.-Q., Yang, J., & Deng, J. (2024). Preparation of methyl ethyl ketone from biomass-derived levulinic acid using a metal-free photocatalytic system and life cycle assessment study. Green Chemistry, 26(19), 10290-10298. doi:https://doi.org/10.1039/D4GC02798A
  26. Steinhäuser, K. G., & Große Ophoff, M. (2025). The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry. Sustainable Chemistry, 6(2), 16. doi:https://doi.org/10.3390/suschem6020016
  27. Sylvia, E., & Sunitiyoso, Y. (2024). A system dynamic model for Indonesian petrochemical industry emission reduction. International Journal of Energy Sector Management, 18(1), 1-25. doi:https://doi.org/10.1108/IJESM-07-2022-0006
  28. Taware, M., Patil, D., & Arakerimath, R. (2017). Design, Fabrication and Testing of Shell and Tube Heat Exchanger for Heat Recovery from Hydraulic Oil. International Journal of Engineering Research and, V6. doi:https://doi.org/10.17577/IJERTV6IS070289
  29. Veriyawan, R., Biyanto, T., & Nugroho, G. (2014). Optimasi Desain Heat Exchanger Shell-And-Tube Menggunakan Metode Particle Swarm Optimization. Jurnal Institut Teknologi Sepuluh Nopember (ITS), Surabaya.
  30. Vuki?, M., Tomi?, M., Živkovi?, P., & Ili?, G. (2014). Effect of segmental baffles on the shell-and-tube heat exchanger effectiveness. Hemijska industrija, 68, 171-177. doi:https://doi.org/10.2298/HEMIND130127041V
  31. Wicaksono, C., Wijanarko, E., Simanullang, O. H., & Tahad, A. (2018). Perancangan Eco Heat Exchanger Type 1-2 Shell And Tube dan Pengaruh Jumlah Baffle Terhadap Transfer Panas. Jurnal Chemurgy, 1(1), 27-30.
  32. Wuryanti, S., Hudalil, A., & Nugrahaeni, I. (2021). Gambaran kompetensi Widyaiswara dalam mengelola pembelajaran di Pusat Pendidikan dan Pelatihan Kesejahteraan Sosial Kementerian Sosial. Jurnal Ilmiah Widyaiswara, 1(1), 27-34. doi: https://doi.org/10.35912/jiw.v1i1.233
  33. Yang, J., Fan, A., Liu, W., & Jacobi, A. M. (2014). Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory. Energy conversion and management, 78, 468-476. doi:https://doi.org/10.1016/j.enconman.2013.11.008
  34. Zohuri, B. (2017). Compact heat exchangers: Springer.