Struktur Biomolekul dan Mekanisme Aksi Vaksin Sars-Cov-2 Efektif dalam Melawan Covid-19

Published: Sep 13, 2022

Abstract:

Purpose: The aim of this study is to deepen understanding of the structure of the vaccine against SARS-CoV-2 infection and the underlying mechanism so that its efficacy and effectiveness can be assessed.

Method: used in this journal is a systematic literature review. References for this review were identified through searches of PubMed, Google Scholar, BioRxiv, MedRxiv, drug regulatory agencies, and pharmaceutical company websites.

Results: Overall, all COVID-19 vaccines had high efficacy against the SARS-CoV-2 strain and were well tolerated. All vaccines appear to be a safe and effective strategy to prevent COVID-19 from getting worse.

Limitations: Further research is needed to assess the magnitude of the risks of using the vaccine against its benefits in preventing SARS-CoV-2 infection.

Contribution: By understanding the structure of the vaccine and its mechanism of action, it is hoped that the selection of the right vaccine can effectively suppress the pandemic.

Keywords:
1. antibody
2. efficacy
3. effectiveness
4. COVID-19
5. SARS-CoV-2
6. vaccine
Authors:
Amelia Rizki Khalidah
How to Cite
Khalidah, A. R. (2022). Struktur Biomolekul dan Mekanisme Aksi Vaksin Sars-Cov-2 Efektif dalam Melawan Covid-19 . Jurnal Ilmu Medis Indonesia, 2(1), 1–10. https://doi.org/10.35912/jimi.v2i1.1006

Downloads

Download data is not yet available.
Issue & Section
References

    Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 83, 104327. https://doi.org/10.1016/j.meegid.2020.104327

    Afifa, D. (2022). Potensi Terapeutik dari Metabolit Aktif Rimpang Jahe dalam Memodulasi Imunitas Tubuh terhadap Covid-19. Jurnal Ilmu Medis Indonesia, 1(2), 71-81. https://doi.org/10.35912/jimi.v1i2.917

    An, D., Frassetto, A., Jacquinet, E., Eybye, M., Milano, J., DeAntonis, C., Nguyen, V., Laureano, R., Milton, J., Sabnis, S., Lukacs, C. M., & Guey, L. T. (2019). Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine, 45, 519–528. https://doi.org/10.1016/j.ebiom.2019.07.003

    Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P., … COVE Study Group (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England journal of medicine, 384(5), 403–416. https://doi.org/10.1056/NEJMoa2035389

    Batty, C. J., Heise, M. T., Bachelder, E. M., & Ainslie, K. M. (2021). Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Advanced drug delivery reviews, 169, 168–189. https://doi.org/10.1016/j.addr.2020.12.006

    Barberis, I., Myles, P., Ault, S. K., Bragazzi, N. L., & Martini, M. (2016). History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines. Journal of preventive medicine and hygiene, 57 (3), E115–E120.

    Calina, D., Docea, A. O., Petrakis, D., Egorov, A. M., Ishmukhametov, A. A., Gabibov, A. G., Shtilman, M. I., Kostoff, R., Carvalho, F., Vinceti, M., Spandidos, D. A., & Tsatsakis, A. (2020). Towards effective COVID?19 vaccines: Updates, perspectives and challenges (Review). International journal of molecular medicine, 46 (1), 3–16. https://doi.org/10.3892/ijmm.2020.4596

    Cao, W. C., Liu, W., Zhang, P. H., Zhang, F., & Richardus, J. H. (2007). Disappearance of antibodies to SARS-associated coronavirus after recovery. The New England journal of medicine, 357 (11), 1162–1163. https://doi.org/10.1056/NEJMc070348

    Chin, A., Chu, J., Perera, M., Hui, K., Yen, H. L., Chan, M., Peiris, M., & Poon, L. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet. Microbe, 1 (1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3

    Delrue, I., Verzele, D., Madder, A., & Nauwynck, H. J. (2012). Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert review of vaccines, 11 (6), 695–719. https://doi.org/10.1586/erv.12.38

    Emary, K. R. W., Golubchik, T., Aley, P. K., Ariani, C. V., Angus, B., Bibi, S., et al. (2021). Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, 397 (10282): 1351-62. https://doi.org/10.1016/S0140-6736(21)00628-0

    Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., Minassian, A. M., et al (Oxford COVID Vaccine Trial Group). (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 396 (10249), 467–478. https://doi.org/10.1016/S0140-6736(20)31604-4

    Fu, J., Zhou, B., Zhang, L., Balaji, K. S., Wei, C., Liu, X., Chen, H., Peng, J., & Fu, J. (2020). Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Molecular biology reports, 47 (6): 4383–4392. https://doi.org/10.1007/s11033-020-05478-4

    Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge, X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., Li, J., et al. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.), 369(6499), 77–81. https://doi.org/10.1126/science.abc1932

    Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Lu, Z., & Tan, W. (2015). Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology, 145(4), 476–484. https://doi.org/10.1111/imm.12462

    Jackson, L. A.., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., et al. (2020). An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine., 383 (20): 1920–1931. https://doi.org/ 10.1056/NEJMoa2022483

    Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Gao, G. F., Chuan, Q., & Wenjie, T. (2017). The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine, 35 (1), 10–18. https://doi.org/10.1016/j.vaccine.2016.11.064

    Jung, F., Krieger, V., Hufert, F. T., & Küpper, J. H. (2020). Herd immunity or suppression strategy to combat COVID-19. Clinical hemorheology and microcirculation, 75 (1), 13–17. https://doi.org/10.3233/CH-209006

    Keech C, Albert G, Cho I, Robertson A, Reed P et al. (2020). Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New England Journal of Medicine N, 383 (24): 2320–2332. https://doi.org/10.1056/NEJMoa2026920

    Khodadadi, E., Maroufi, P., Khodadadi, E., Esposito, I., Ganbarov, K., Espsoito, S., Yousefi, M., Zeinalzadeh, E., & Kafil, H. S. (2020). Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microbial pathogenesis, 146, 104241. https://doi.org/10.1016/j.micpath.2020.104241

    Kim, J. H., & Jacob, J. (2009). DNA vaccines against influenza viruses. Current topics in microbiology and immunology, 333, 197–210. https://doi.org/10.1007/978-3-540-92165-3_10

    Kumar, A., Meldgaard, T. S., & Bertholet, S. (2018). Novel Platforms for the Development of a Universal Influenza Vaccine. Frontiers in immunology, 9, 600. https://doi.org/10.3389/fimmu.2018.00600

    Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Gao, G. F., & Tan, W. (2014). Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PloS one, 9 (11), e112602. https://doi.org/10.1371/journal.pone.0112602

    Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature reviews. Drug discovery, 19 (3), 149–150. https://doi.org/10.1038/d41573-020-00016-0

    Li, L., & Petrovsky, N. (2016). Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines, 15 (3), 313–329. https://doi.org/10.1586/14760584.2016.1124762

    Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., Dzharullaeva, A. S., Kovyrshina, A. V., Lubenets, N. L., Grousova, D. M., Erokhova, A. S., Botikov, A. G., Izhaeva, F. M., Popova, O., Ozharovskaya, T. A., Esmagambetov, I. B., Favorskaya, I. A., Zrelkin, D. I., Voronina, D. V., Shcherbinin, D. N., Semikhin, A. S., … Gam-COVID-Vac Vaccine Trial Group (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England), 397(10275), 671–681. https://doi.org/10.1016/S0140-6736(21)00234-8

    Mackett, M., Smith, G. L., & Moss, B. (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences of the United States of America, 79 (23), 7415–7419. https://doi.org/10.1073/pnas.79.23.7415

    Masykur, F. A. (2022). Hubungan Antara Lama Demam dengan Hasil Pemeriksaan Profil Darah pada Pasien Demam Berdarah Dengue. Jurnal Ilmu Medis Indonesia, 1(2), 53-58. https://doi.org/10.35912/jimi.v1i2.912

    Nascimento, I. P., & Leite, L. C. (2012). Recombinant vaccines and the development of new vaccine strategies. Brazilian journal of medical and biological, 45 (12), 1102–1111. https://doi.org/10.1590/s0100-879x2012007500142

    Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr, Hammitt, L. L., Türeci, Ö., … C4591001 Clinical Trial Group (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577

    Randolph, H. E., & Barreiro, L. B. (2020). Herd Immunity: Understanding COVID-19. Immunity, 52(5), 737 – 741. https://doi.org/10.1016/j.immuni.2020.04.012

    Sempowski, G. D., Saunders, K. O., Acharya, P., Wiehe, K. J., & Haynes, B. F. (2020). Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell, 181 (7), 1458–1463. https://doi.org/10.1016/j.cell.2020.05.041

    Seo, Y. B., Suh, Y. S., Ryu, J. I., Jang, H., Oh, H., Koo, B. S., Seo, S. H., Hong, J. J., Song, M., Kim, S. J., & Sung, Y. C. (2021). Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines, 9 (4), 307. https://doi.org/10.3390/vaccines9040307

    Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005

    Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., Lalloo, U., Masilela, M., Moodley, D., Hanley, S., Fouche, L., Louw, C., Tameris, M., Singh, N., Goga, A., Dheda, K., Grobbelaar, C., Kruger, G., Carrim-Ganey, N., Baillie, V., … 2019nCoV-501 Study Group (2021). Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. The New England journal of medicine, 384(20), 1899–1909. https://doi.org/10.1056/NEJMoa2103055

    Silveira, M. M., Moreira, G., & Mendonça, M. (2021). DNA vaccines against COVID-19: Perspectives and challenges. Life sciences, 267, 118919. https://doi.org/10.1016/j.lfs.2020.118919

    Smith, T., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., Gary, E. N., Walker, S. N., Schultheis, K., Purwar, M., Xu, Z., Walters, J., Bhojnagarwala, P., Yang, M., Chokkalingam, N., Pezzoli, P., Parzych, E., Reuschel, E. L., Doan, A., Tursi, N., et al. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications, 11 (1), 2601. https://doi.org/10.1038/s41467-020-16505-0

    South, A. M., Tomlinson, L., Edmonston, D., Hiremath, S., & Sparks, M. A. (2020). Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nature reviews. Nephrology, 16(6), 305–307. https://doi.org/10.1038/s41581-020-0279-4

    Spychalski, P., B?a?y?ska-Spychalska, A., & Kobiela, J. (2020). Estimating case fatality rates of COVID-19. The Lancet. Infectious diseases, 20(7), 774–775. https://doi.org/10.1016/S1473-3099(20)30246-2

    Tabasum, F., dan Ghosh, N. (2021). Reinventing employee morale during Covid Pandemic: Study of psychological contract and job satisfaction of healthcare professionals. International Journal of Financial, Accounting, and Management, 3(3), 259-274. https://doi.org/10.35912/ijfam.v3i3.596

    Tanriover, M. D., Do?anay, H. L., Akova, M., Güner, H. R., Azap, A., Akhan, S., Köse, ?., Erdinç, F. ?., Akal?n, E. H., Tabak, Ö. F., Pullukçu, H., Batum, Ö., ?im?ek Yavuz, S., Turhan, Ö., Y?ld?rmak, M. T., Köksal, ?., Ta?ova, Y., Korten, V., Y?lmaz, G., Çelen, M. K., … CoronaVac Study Group (2021). Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (London, England), 398(10296), 213–222. https://doi.org/10.1016/S0140-6736(21)01429-X

    Walsh EE, Frenck R, Falsey FR, Kitchin N, Absalon J, et al. (2020). RNA-based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. Medrxiv.

    Wee, M. K., Cabantog, J., Magpayo, D. D., Sabido, N. L., Samson, E., & David, P. (2021). Factors causing vaccine hesitancy among parents in Bulacan. Studies in Medicine and Public Health, 1(1), 15-29. https://doi.org/10.35912/simph.v1i1.715.

    World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines. (2021). https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

    Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., et al. (2022). Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. The Lancet. Infectious diseases, 22 (2), 196–208. https://doi.org/10.1016/S1473-3099(21)00462-X

    Zhang, C., Maruggi, G., Shan, H., & Li, J. (2019). Advances in mRNA Vaccines for Infectious Diseases. Frontiers in immunology, 10, 594. https://doi.org/10.3389/fimmu.2019.00594

    Zhu, F., Jin, P., Zhu, T., Wang, W., Ye, H., et al. (2021). Safety and immunogenicity of a recombinant adenovirus type-5-vectored COVID-19 vaccine with a homologous prime-boost regimen in healthy participants aged 6 years and above: a randomised, double-blind, placebo-controlled, phase 2b trial. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, ciab845. https://doi.org/10.1093/cid/ciab845

  1. Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 83, 104327. https://doi.org/10.1016/j.meegid.2020.104327
  2. Afifa, D. (2022). Potensi Terapeutik dari Metabolit Aktif Rimpang Jahe dalam Memodulasi Imunitas Tubuh terhadap Covid-19. Jurnal Ilmu Medis Indonesia, 1(2), 71-81. https://doi.org/10.35912/jimi.v1i2.917
  3. An, D., Frassetto, A., Jacquinet, E., Eybye, M., Milano, J., DeAntonis, C., Nguyen, V., Laureano, R., Milton, J., Sabnis, S., Lukacs, C. M., & Guey, L. T. (2019). Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine, 45, 519–528. https://doi.org/10.1016/j.ebiom.2019.07.003
  4. Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P., … COVE Study Group (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England journal of medicine, 384(5), 403–416. https://doi.org/10.1056/NEJMoa2035389
  5. Batty, C. J., Heise, M. T., Bachelder, E. M., & Ainslie, K. M. (2021). Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Advanced drug delivery reviews, 169, 168–189. https://doi.org/10.1016/j.addr.2020.12.006
  6. Barberis, I., Myles, P., Ault, S. K., Bragazzi, N. L., & Martini, M. (2016). History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines. Journal of preventive medicine and hygiene, 57 (3), E115–E120.
  7. Calina, D., Docea, A. O., Petrakis, D., Egorov, A. M., Ishmukhametov, A. A., Gabibov, A. G., Shtilman, M. I., Kostoff, R., Carvalho, F., Vinceti, M., Spandidos, D. A., & Tsatsakis, A. (2020). Towards effective COVID?19 vaccines: Updates, perspectives and challenges (Review). International journal of molecular medicine, 46 (1), 3–16. https://doi.org/10.3892/ijmm.2020.4596
  8. Cao, W. C., Liu, W., Zhang, P. H., Zhang, F., & Richardus, J. H. (2007). Disappearance of antibodies to SARS-associated coronavirus after recovery. The New England journal of medicine, 357 (11), 1162–1163. https://doi.org/10.1056/NEJMc070348
  9. Chin, A., Chu, J., Perera, M., Hui, K., Yen, H. L., Chan, M., Peiris, M., & Poon, L. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet. Microbe, 1 (1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3
  10. Delrue, I., Verzele, D., Madder, A., & Nauwynck, H. J. (2012). Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert review of vaccines, 11 (6), 695–719. https://doi.org/10.1586/erv.12.38
  11. Emary, K. R. W., Golubchik, T., Aley, P. K., Ariani, C. V., Angus, B., Bibi, S., et al. (2021). Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, 397 (10282): 1351-62. https://doi.org/10.1016/S0140-6736(21)00628-0
  12. Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., Minassian, A. M., et al (Oxford COVID Vaccine Trial Group). (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 396 (10249), 467–478. https://doi.org/10.1016/S0140-6736(20)31604-4
  13. Fu, J., Zhou, B., Zhang, L., Balaji, K. S., Wei, C., Liu, X., Chen, H., Peng, J., & Fu, J. (2020). Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Molecular biology reports, 47 (6): 4383–4392. https://doi.org/10.1007/s11033-020-05478-4
  14. Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge, X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., Li, J., et al. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.), 369(6499), 77–81. https://doi.org/10.1126/science.abc1932
  15. Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Lu, Z., & Tan, W. (2015). Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology, 145(4), 476–484. https://doi.org/10.1111/imm.12462
  16. Jackson, L. A.., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., et al. (2020). An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine., 383 (20): 1920–1931. https://doi.org/ 10.1056/NEJMoa2022483
  17. Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Gao, G. F., Chuan, Q., & Wenjie, T. (2017). The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine, 35 (1), 10–18. https://doi.org/10.1016/j.vaccine.2016.11.064
  18. Jung, F., Krieger, V., Hufert, F. T., & Küpper, J. H. (2020). Herd immunity or suppression strategy to combat COVID-19. Clinical hemorheology and microcirculation, 75 (1), 13–17. https://doi.org/10.3233/CH-209006
  19. Keech C, Albert G, Cho I, Robertson A, Reed P et al. (2020). Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New England Journal of Medicine N, 383 (24): 2320–2332. https://doi.org/10.1056/NEJMoa2026920
  20. Khodadadi, E., Maroufi, P., Khodadadi, E., Esposito, I., Ganbarov, K., Espsoito, S., Yousefi, M., Zeinalzadeh, E., & Kafil, H. S. (2020). Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microbial pathogenesis, 146, 104241. https://doi.org/10.1016/j.micpath.2020.104241
  21. Kim, J. H., & Jacob, J. (2009). DNA vaccines against influenza viruses. Current topics in microbiology and immunology, 333, 197–210. https://doi.org/10.1007/978-3-540-92165-3_10
  22. Kumar, A., Meldgaard, T. S., & Bertholet, S. (2018). Novel Platforms for the Development of a Universal Influenza Vaccine. Frontiers in immunology, 9, 600. https://doi.org/10.3389/fimmu.2018.00600
  23. Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Gao, G. F., & Tan, W. (2014). Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PloS one, 9 (11), e112602. https://doi.org/10.1371/journal.pone.0112602
  24. Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature reviews. Drug discovery, 19 (3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
  25. Li, L., & Petrovsky, N. (2016). Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines, 15 (3), 313–329. https://doi.org/10.1586/14760584.2016.1124762
  26. Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., Dzharullaeva, A. S., Kovyrshina, A. V., Lubenets, N. L., Grousova, D. M., Erokhova, A. S., Botikov, A. G., Izhaeva, F. M., Popova, O., Ozharovskaya, T. A., Esmagambetov, I. B., Favorskaya, I. A., Zrelkin, D. I., Voronina, D. V., Shcherbinin, D. N., Semikhin, A. S., … Gam-COVID-Vac Vaccine Trial Group (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England), 397(10275), 671–681. https://doi.org/10.1016/S0140-6736(21)00234-8
  27. Mackett, M., Smith, G. L., & Moss, B. (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences of the United States of America, 79 (23), 7415–7419. https://doi.org/10.1073/pnas.79.23.7415
  28. Masykur, F. A. (2022). Hubungan Antara Lama Demam dengan Hasil Pemeriksaan Profil Darah pada Pasien Demam Berdarah Dengue. Jurnal Ilmu Medis Indonesia, 1(2), 53-58. https://doi.org/10.35912/jimi.v1i2.912
  29. Nascimento, I. P., & Leite, L. C. (2012). Recombinant vaccines and the development of new vaccine strategies. Brazilian journal of medical and biological, 45 (12), 1102–1111. https://doi.org/10.1590/s0100-879x2012007500142
  30. Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr, Hammitt, L. L., Türeci, Ö., … C4591001 Clinical Trial Group (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
  31. Randolph, H. E., & Barreiro, L. B. (2020). Herd Immunity: Understanding COVID-19. Immunity, 52(5), 737 – 741. https://doi.org/10.1016/j.immuni.2020.04.012
  32. Sempowski, G. D., Saunders, K. O., Acharya, P., Wiehe, K. J., & Haynes, B. F. (2020). Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell, 181 (7), 1458–1463. https://doi.org/10.1016/j.cell.2020.05.041
  33. Seo, Y. B., Suh, Y. S., Ryu, J. I., Jang, H., Oh, H., Koo, B. S., Seo, S. H., Hong, J. J., Song, M., Kim, S. J., & Sung, Y. C. (2021). Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines, 9 (4), 307. https://doi.org/10.3390/vaccines9040307
  34. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
  35. Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., Lalloo, U., Masilela, M., Moodley, D., Hanley, S., Fouche, L., Louw, C., Tameris, M., Singh, N., Goga, A., Dheda, K., Grobbelaar, C., Kruger, G., Carrim-Ganey, N., Baillie, V., … 2019nCoV-501 Study Group (2021). Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. The New England journal of medicine, 384(20), 1899–1909. https://doi.org/10.1056/NEJMoa2103055
  36. Silveira, M. M., Moreira, G., & Mendonça, M. (2021). DNA vaccines against COVID-19: Perspectives and challenges. Life sciences, 267, 118919. https://doi.org/10.1016/j.lfs.2020.118919
  37. Smith, T., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., Gary, E. N., Walker, S. N., Schultheis, K., Purwar, M., Xu, Z., Walters, J., Bhojnagarwala, P., Yang, M., Chokkalingam, N., Pezzoli, P., Parzych, E., Reuschel, E. L., Doan, A., Tursi, N., et al. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications, 11 (1), 2601. https://doi.org/10.1038/s41467-020-16505-0
  38. South, A. M., Tomlinson, L., Edmonston, D., Hiremath, S., & Sparks, M. A. (2020). Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nature reviews. Nephrology, 16(6), 305–307. https://doi.org/10.1038/s41581-020-0279-4
  39. Spychalski, P., B?a?y?ska-Spychalska, A., & Kobiela, J. (2020). Estimating case fatality rates of COVID-19. The Lancet. Infectious diseases, 20(7), 774–775. https://doi.org/10.1016/S1473-3099(20)30246-2
  40. Tabasum, F., dan Ghosh, N. (2021). Reinventing employee morale during Covid Pandemic: Study of psychological contract and job satisfaction of healthcare professionals. International Journal of Financial, Accounting, and Management, 3(3), 259-274. https://doi.org/10.35912/ijfam.v3i3.596
  41. Tanriover, M. D., Do?anay, H. L., Akova, M., Güner, H. R., Azap, A., Akhan, S., Köse, ?., Erdinç, F. ?., Akal?n, E. H., Tabak, Ö. F., Pullukçu, H., Batum, Ö., ?im?ek Yavuz, S., Turhan, Ö., Y?ld?rmak, M. T., Köksal, ?., Ta?ova, Y., Korten, V., Y?lmaz, G., Çelen, M. K., … CoronaVac Study Group (2021). Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (London, England), 398(10296), 213–222. https://doi.org/10.1016/S0140-6736(21)01429-X
  42. Walsh EE, Frenck R, Falsey FR, Kitchin N, Absalon J, et al. (2020). RNA-based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. Medrxiv.
  43. Wee, M. K., Cabantog, J., Magpayo, D. D., Sabido, N. L., Samson, E., & David, P. (2021). Factors causing vaccine hesitancy among parents in Bulacan. Studies in Medicine and Public Health, 1(1), 15-29. https://doi.org/10.35912/simph.v1i1.715.
  44. World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines. (2021). https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
  45. Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., et al. (2022). Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. The Lancet. Infectious diseases, 22 (2), 196–208. https://doi.org/10.1016/S1473-3099(21)00462-X
  46. Zhang, C., Maruggi, G., Shan, H., & Li, J. (2019). Advances in mRNA Vaccines for Infectious Diseases. Frontiers in immunology, 10, 594. https://doi.org/10.3389/fimmu.2019.00594
  47. Zhu, F., Jin, P., Zhu, T., Wang, W., Ye, H., et al. (2021). Safety and immunogenicity of a recombinant adenovirus type-5-vectored COVID-19 vaccine with a homologous prime-boost regimen in healthy participants aged 6 years and above: a randomised, double-blind, placebo-controlled, phase 2b trial. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, ciab845. https://doi.org/10.1093/cid/ciab845