Struktur Biomolekul dan Mekanisme Aksi Vaksin Sars-Cov-2 Efektif dalam Melawan Covid-19
Abstract:
Purpose: The aim of this study is to deepen understanding of the structure of the vaccine against SARS-CoV-2 infection and the underlying mechanism so that its efficacy and effectiveness can be assessed.
Method: used in this journal is a systematic literature review. References for this review were identified through searches of PubMed, Google Scholar, BioRxiv, MedRxiv, drug regulatory agencies, and pharmaceutical company websites.
Results: Overall, all COVID-19 vaccines had high efficacy against the SARS-CoV-2 strain and were well tolerated. All vaccines appear to be a safe and effective strategy to prevent COVID-19 from getting worse.
Limitations: Further research is needed to assess the magnitude of the risks of using the vaccine against its benefits in preventing SARS-CoV-2 infection.
Contribution: By understanding the structure of the vaccine and its mechanism of action, it is hoped that the selection of the right vaccine can effectively suppress the pandemic.
Downloads

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 83, 104327. https://doi.org/10.1016/j.meegid.2020.104327
Afifa, D. (2022). Potensi Terapeutik dari Metabolit Aktif Rimpang Jahe dalam Memodulasi Imunitas Tubuh terhadap Covid-19. Jurnal Ilmu Medis Indonesia, 1(2), 71-81. https://doi.org/10.35912/jimi.v1i2.917
An, D., Frassetto, A., Jacquinet, E., Eybye, M., Milano, J., DeAntonis, C., Nguyen, V., Laureano, R., Milton, J., Sabnis, S., Lukacs, C. M., & Guey, L. T. (2019). Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine, 45, 519–528. https://doi.org/10.1016/j.ebiom.2019.07.003
Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P., … COVE Study Group (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England journal of medicine, 384(5), 403–416. https://doi.org/10.1056/NEJMoa2035389
Batty, C. J., Heise, M. T., Bachelder, E. M., & Ainslie, K. M. (2021). Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Advanced drug delivery reviews, 169, 168–189. https://doi.org/10.1016/j.addr.2020.12.006
Barberis, I., Myles, P., Ault, S. K., Bragazzi, N. L., & Martini, M. (2016). History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines. Journal of preventive medicine and hygiene, 57 (3), E115–E120.
Calina, D., Docea, A. O., Petrakis, D., Egorov, A. M., Ishmukhametov, A. A., Gabibov, A. G., Shtilman, M. I., Kostoff, R., Carvalho, F., Vinceti, M., Spandidos, D. A., & Tsatsakis, A. (2020). Towards effective COVID?19 vaccines: Updates, perspectives and challenges (Review). International journal of molecular medicine, 46 (1), 3–16. https://doi.org/10.3892/ijmm.2020.4596
Cao, W. C., Liu, W., Zhang, P. H., Zhang, F., & Richardus, J. H. (2007). Disappearance of antibodies to SARS-associated coronavirus after recovery. The New England journal of medicine, 357 (11), 1162–1163. https://doi.org/10.1056/NEJMc070348
Chin, A., Chu, J., Perera, M., Hui, K., Yen, H. L., Chan, M., Peiris, M., & Poon, L. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet. Microbe, 1 (1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3
Delrue, I., Verzele, D., Madder, A., & Nauwynck, H. J. (2012). Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert review of vaccines, 11 (6), 695–719. https://doi.org/10.1586/erv.12.38
Emary, K. R. W., Golubchik, T., Aley, P. K., Ariani, C. V., Angus, B., Bibi, S., et al. (2021). Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, 397 (10282): 1351-62. https://doi.org/10.1016/S0140-6736(21)00628-0
Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., Minassian, A. M., et al (Oxford COVID Vaccine Trial Group). (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 396 (10249), 467–478. https://doi.org/10.1016/S0140-6736(20)31604-4
Fu, J., Zhou, B., Zhang, L., Balaji, K. S., Wei, C., Liu, X., Chen, H., Peng, J., & Fu, J. (2020). Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Molecular biology reports, 47 (6): 4383–4392. https://doi.org/10.1007/s11033-020-05478-4
Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge, X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., Li, J., et al. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.), 369(6499), 77–81. https://doi.org/10.1126/science.abc1932
Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Lu, Z., & Tan, W. (2015). Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology, 145(4), 476–484. https://doi.org/10.1111/imm.12462
Jackson, L. A.., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., et al. (2020). An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine., 383 (20): 1920–1931. https://doi.org/ 10.1056/NEJMoa2022483
Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Gao, G. F., Chuan, Q., & Wenjie, T. (2017). The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine, 35 (1), 10–18. https://doi.org/10.1016/j.vaccine.2016.11.064
Jung, F., Krieger, V., Hufert, F. T., & Küpper, J. H. (2020). Herd immunity or suppression strategy to combat COVID-19. Clinical hemorheology and microcirculation, 75 (1), 13–17. https://doi.org/10.3233/CH-209006
Keech C, Albert G, Cho I, Robertson A, Reed P et al. (2020). Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New England Journal of Medicine N, 383 (24): 2320–2332. https://doi.org/10.1056/NEJMoa2026920
Khodadadi, E., Maroufi, P., Khodadadi, E., Esposito, I., Ganbarov, K., Espsoito, S., Yousefi, M., Zeinalzadeh, E., & Kafil, H. S. (2020). Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microbial pathogenesis, 146, 104241. https://doi.org/10.1016/j.micpath.2020.104241
Kim, J. H., & Jacob, J. (2009). DNA vaccines against influenza viruses. Current topics in microbiology and immunology, 333, 197–210. https://doi.org/10.1007/978-3-540-92165-3_10
Kumar, A., Meldgaard, T. S., & Bertholet, S. (2018). Novel Platforms for the Development of a Universal Influenza Vaccine. Frontiers in immunology, 9, 600. https://doi.org/10.3389/fimmu.2018.00600
Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Gao, G. F., & Tan, W. (2014). Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PloS one, 9 (11), e112602. https://doi.org/10.1371/journal.pone.0112602
Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature reviews. Drug discovery, 19 (3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
Li, L., & Petrovsky, N. (2016). Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines, 15 (3), 313–329. https://doi.org/10.1586/14760584.2016.1124762
Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., Dzharullaeva, A. S., Kovyrshina, A. V., Lubenets, N. L., Grousova, D. M., Erokhova, A. S., Botikov, A. G., Izhaeva, F. M., Popova, O., Ozharovskaya, T. A., Esmagambetov, I. B., Favorskaya, I. A., Zrelkin, D. I., Voronina, D. V., Shcherbinin, D. N., Semikhin, A. S., … Gam-COVID-Vac Vaccine Trial Group (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England), 397(10275), 671–681. https://doi.org/10.1016/S0140-6736(21)00234-8
Mackett, M., Smith, G. L., & Moss, B. (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences of the United States of America, 79 (23), 7415–7419. https://doi.org/10.1073/pnas.79.23.7415
Masykur, F. A. (2022). Hubungan Antara Lama Demam dengan Hasil Pemeriksaan Profil Darah pada Pasien Demam Berdarah Dengue. Jurnal Ilmu Medis Indonesia, 1(2), 53-58. https://doi.org/10.35912/jimi.v1i2.912
Nascimento, I. P., & Leite, L. C. (2012). Recombinant vaccines and the development of new vaccine strategies. Brazilian journal of medical and biological, 45 (12), 1102–1111. https://doi.org/10.1590/s0100-879x2012007500142
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr, Hammitt, L. L., Türeci, Ö., … C4591001 Clinical Trial Group (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
Randolph, H. E., & Barreiro, L. B. (2020). Herd Immunity: Understanding COVID-19. Immunity, 52(5), 737 – 741. https://doi.org/10.1016/j.immuni.2020.04.012
Sempowski, G. D., Saunders, K. O., Acharya, P., Wiehe, K. J., & Haynes, B. F. (2020). Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell, 181 (7), 1458–1463. https://doi.org/10.1016/j.cell.2020.05.041
Seo, Y. B., Suh, Y. S., Ryu, J. I., Jang, H., Oh, H., Koo, B. S., Seo, S. H., Hong, J. J., Song, M., Kim, S. J., & Sung, Y. C. (2021). Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines, 9 (4), 307. https://doi.org/10.3390/vaccines9040307
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., Lalloo, U., Masilela, M., Moodley, D., Hanley, S., Fouche, L., Louw, C., Tameris, M., Singh, N., Goga, A., Dheda, K., Grobbelaar, C., Kruger, G., Carrim-Ganey, N., Baillie, V., … 2019nCoV-501 Study Group (2021). Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. The New England journal of medicine, 384(20), 1899–1909. https://doi.org/10.1056/NEJMoa2103055
Silveira, M. M., Moreira, G., & Mendonça, M. (2021). DNA vaccines against COVID-19: Perspectives and challenges. Life sciences, 267, 118919. https://doi.org/10.1016/j.lfs.2020.118919
Smith, T., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., Gary, E. N., Walker, S. N., Schultheis, K., Purwar, M., Xu, Z., Walters, J., Bhojnagarwala, P., Yang, M., Chokkalingam, N., Pezzoli, P., Parzych, E., Reuschel, E. L., Doan, A., Tursi, N., et al. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications, 11 (1), 2601. https://doi.org/10.1038/s41467-020-16505-0
South, A. M., Tomlinson, L., Edmonston, D., Hiremath, S., & Sparks, M. A. (2020). Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nature reviews. Nephrology, 16(6), 305–307. https://doi.org/10.1038/s41581-020-0279-4
Spychalski, P., B?a?y?ska-Spychalska, A., & Kobiela, J. (2020). Estimating case fatality rates of COVID-19. The Lancet. Infectious diseases, 20(7), 774–775. https://doi.org/10.1016/S1473-3099(20)30246-2
Tabasum, F., dan Ghosh, N. (2021). Reinventing employee morale during Covid Pandemic: Study of psychological contract and job satisfaction of healthcare professionals. International Journal of Financial, Accounting, and Management, 3(3), 259-274. https://doi.org/10.35912/ijfam.v3i3.596
Tanriover, M. D., Do?anay, H. L., Akova, M., Güner, H. R., Azap, A., Akhan, S., Köse, ?., Erdinç, F. ?., Akal?n, E. H., Tabak, Ö. F., Pullukçu, H., Batum, Ö., ?im?ek Yavuz, S., Turhan, Ö., Y?ld?rmak, M. T., Köksal, ?., Ta?ova, Y., Korten, V., Y?lmaz, G., Çelen, M. K., … CoronaVac Study Group (2021). Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (London, England), 398(10296), 213–222. https://doi.org/10.1016/S0140-6736(21)01429-X
Walsh EE, Frenck R, Falsey FR, Kitchin N, Absalon J, et al. (2020). RNA-based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. Medrxiv.
Wee, M. K., Cabantog, J., Magpayo, D. D., Sabido, N. L., Samson, E., & David, P. (2021). Factors causing vaccine hesitancy among parents in Bulacan. Studies in Medicine and Public Health, 1(1), 15-29. https://doi.org/10.35912/simph.v1i1.715.
World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines. (2021). https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., et al. (2022). Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. The Lancet. Infectious diseases, 22 (2), 196–208. https://doi.org/10.1016/S1473-3099(21)00462-X
Zhang, C., Maruggi, G., Shan, H., & Li, J. (2019). Advances in mRNA Vaccines for Infectious Diseases. Frontiers in immunology, 10, 594. https://doi.org/10.3389/fimmu.2019.00594
Zhu, F., Jin, P., Zhu, T., Wang, W., Ye, H., et al. (2021). Safety and immunogenicity of a recombinant adenovirus type-5-vectored COVID-19 vaccine with a homologous prime-boost regimen in healthy participants aged 6 years and above: a randomised, double-blind, placebo-controlled, phase 2b trial. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, ciab845. https://doi.org/10.1093/cid/ciab845
- Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 83, 104327. https://doi.org/10.1016/j.meegid.2020.104327
- Afifa, D. (2022). Potensi Terapeutik dari Metabolit Aktif Rimpang Jahe dalam Memodulasi Imunitas Tubuh terhadap Covid-19. Jurnal Ilmu Medis Indonesia, 1(2), 71-81. https://doi.org/10.35912/jimi.v1i2.917
- An, D., Frassetto, A., Jacquinet, E., Eybye, M., Milano, J., DeAntonis, C., Nguyen, V., Laureano, R., Milton, J., Sabnis, S., Lukacs, C. M., & Guey, L. T. (2019). Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. EBioMedicine, 45, 519–528. https://doi.org/10.1016/j.ebiom.2019.07.003
- Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., Gilbert, P., … COVE Study Group (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. The New England journal of medicine, 384(5), 403–416. https://doi.org/10.1056/NEJMoa2035389
- Batty, C. J., Heise, M. T., Bachelder, E. M., & Ainslie, K. M. (2021). Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Advanced drug delivery reviews, 169, 168–189. https://doi.org/10.1016/j.addr.2020.12.006
- Barberis, I., Myles, P., Ault, S. K., Bragazzi, N. L., & Martini, M. (2016). History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines. Journal of preventive medicine and hygiene, 57 (3), E115–E120.
- Calina, D., Docea, A. O., Petrakis, D., Egorov, A. M., Ishmukhametov, A. A., Gabibov, A. G., Shtilman, M. I., Kostoff, R., Carvalho, F., Vinceti, M., Spandidos, D. A., & Tsatsakis, A. (2020). Towards effective COVID?19 vaccines: Updates, perspectives and challenges (Review). International journal of molecular medicine, 46 (1), 3–16. https://doi.org/10.3892/ijmm.2020.4596
- Cao, W. C., Liu, W., Zhang, P. H., Zhang, F., & Richardus, J. H. (2007). Disappearance of antibodies to SARS-associated coronavirus after recovery. The New England journal of medicine, 357 (11), 1162–1163. https://doi.org/10.1056/NEJMc070348
- Chin, A., Chu, J., Perera, M., Hui, K., Yen, H. L., Chan, M., Peiris, M., & Poon, L. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet. Microbe, 1 (1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3
- Delrue, I., Verzele, D., Madder, A., & Nauwynck, H. J. (2012). Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert review of vaccines, 11 (6), 695–719. https://doi.org/10.1586/erv.12.38
- Emary, K. R. W., Golubchik, T., Aley, P. K., Ariani, C. V., Angus, B., Bibi, S., et al. (2021). Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, 397 (10282): 1351-62. https://doi.org/10.1016/S0140-6736(21)00628-0
- Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., Minassian, A. M., et al (Oxford COVID Vaccine Trial Group). (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 396 (10249), 467–478. https://doi.org/10.1016/S0140-6736(20)31604-4
- Fu, J., Zhou, B., Zhang, L., Balaji, K. S., Wei, C., Liu, X., Chen, H., Peng, J., & Fu, J. (2020). Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Molecular biology reports, 47 (6): 4383–4392. https://doi.org/10.1007/s11033-020-05478-4
- Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., Li, Y., Zhu, L., Wang, N., Lv, Z., Gao, H., Ge, X., Kan, B., Hu, Y., Liu, J., Cai, F., Jiang, D., Yin, Y., Qin, C., Li, J., et al. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science (New York, N.Y.), 369(6499), 77–81. https://doi.org/10.1126/science.abc1932
- Guo, X., Deng, Y., Chen, H., Lan, J., Wang, W., Zou, X., Hung, T., Lu, Z., & Tan, W. (2015). Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus. Immunology, 145(4), 476–484. https://doi.org/10.1111/imm.12462
- Jackson, L. A.., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., et al. (2020). An mRNA vaccine against SARS-CoV-2—preliminary report. New England Journal of Medicine., 383 (20): 1920–1931. https://doi.org/ 10.1056/NEJMoa2022483
- Jiaming, L., Yanfeng, Y., Yao, D., Yawei, H., Linlin, B., Baoying, H., Jinghua, Y., Gao, G. F., Chuan, Q., & Wenjie, T. (2017). The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Vaccine, 35 (1), 10–18. https://doi.org/10.1016/j.vaccine.2016.11.064
- Jung, F., Krieger, V., Hufert, F. T., & Küpper, J. H. (2020). Herd immunity or suppression strategy to combat COVID-19. Clinical hemorheology and microcirculation, 75 (1), 13–17. https://doi.org/10.3233/CH-209006
- Keech C, Albert G, Cho I, Robertson A, Reed P et al. (2020). Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New England Journal of Medicine N, 383 (24): 2320–2332. https://doi.org/10.1056/NEJMoa2026920
- Khodadadi, E., Maroufi, P., Khodadadi, E., Esposito, I., Ganbarov, K., Espsoito, S., Yousefi, M., Zeinalzadeh, E., & Kafil, H. S. (2020). Study of combining virtual screening and antiviral treatments of the Sars-CoV-2 (Covid-19). Microbial pathogenesis, 146, 104241. https://doi.org/10.1016/j.micpath.2020.104241
- Kim, J. H., & Jacob, J. (2009). DNA vaccines against influenza viruses. Current topics in microbiology and immunology, 333, 197–210. https://doi.org/10.1007/978-3-540-92165-3_10
- Kumar, A., Meldgaard, T. S., & Bertholet, S. (2018). Novel Platforms for the Development of a Universal Influenza Vaccine. Frontiers in immunology, 9, 600. https://doi.org/10.3389/fimmu.2018.00600
- Lan, J., Deng, Y., Chen, H., Lu, G., Wang, W., Guo, X., Lu, Z., Gao, G. F., & Tan, W. (2014). Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen. PloS one, 9 (11), e112602. https://doi.org/10.1371/journal.pone.0112602
- Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature reviews. Drug discovery, 19 (3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
- Li, L., & Petrovsky, N. (2016). Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert review of vaccines, 15 (3), 313–329. https://doi.org/10.1586/14760584.2016.1124762
- Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., Dzharullaeva, A. S., Kovyrshina, A. V., Lubenets, N. L., Grousova, D. M., Erokhova, A. S., Botikov, A. G., Izhaeva, F. M., Popova, O., Ozharovskaya, T. A., Esmagambetov, I. B., Favorskaya, I. A., Zrelkin, D. I., Voronina, D. V., Shcherbinin, D. N., Semikhin, A. S., … Gam-COVID-Vac Vaccine Trial Group (2021). Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet (London, England), 397(10275), 671–681. https://doi.org/10.1016/S0140-6736(21)00234-8
- Mackett, M., Smith, G. L., & Moss, B. (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences of the United States of America, 79 (23), 7415–7419. https://doi.org/10.1073/pnas.79.23.7415
- Masykur, F. A. (2022). Hubungan Antara Lama Demam dengan Hasil Pemeriksaan Profil Darah pada Pasien Demam Berdarah Dengue. Jurnal Ilmu Medis Indonesia, 1(2), 53-58. https://doi.org/10.35912/jimi.v1i2.912
- Nascimento, I. P., & Leite, L. C. (2012). Recombinant vaccines and the development of new vaccine strategies. Brazilian journal of medical and biological, 45 (12), 1102–1111. https://doi.org/10.1590/s0100-879x2012007500142
- Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr, Hammitt, L. L., Türeci, Ö., … C4591001 Clinical Trial Group (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England journal of medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
- Randolph, H. E., & Barreiro, L. B. (2020). Herd Immunity: Understanding COVID-19. Immunity, 52(5), 737 – 741. https://doi.org/10.1016/j.immuni.2020.04.012
- Sempowski, G. D., Saunders, K. O., Acharya, P., Wiehe, K. J., & Haynes, B. F. (2020). Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell, 181 (7), 1458–1463. https://doi.org/10.1016/j.cell.2020.05.041
- Seo, Y. B., Suh, Y. S., Ryu, J. I., Jang, H., Oh, H., Koo, B. S., Seo, S. H., Hong, J. J., Song, M., Kim, S. J., & Sung, Y. C. (2021). Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines, 9 (4), 307. https://doi.org/10.3390/vaccines9040307
- Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
- Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., Lalloo, U., Masilela, M., Moodley, D., Hanley, S., Fouche, L., Louw, C., Tameris, M., Singh, N., Goga, A., Dheda, K., Grobbelaar, C., Kruger, G., Carrim-Ganey, N., Baillie, V., … 2019nCoV-501 Study Group (2021). Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. The New England journal of medicine, 384(20), 1899–1909. https://doi.org/10.1056/NEJMoa2103055
- Silveira, M. M., Moreira, G., & Mendonça, M. (2021). DNA vaccines against COVID-19: Perspectives and challenges. Life sciences, 267, 118919. https://doi.org/10.1016/j.lfs.2020.118919
- Smith, T., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., Gary, E. N., Walker, S. N., Schultheis, K., Purwar, M., Xu, Z., Walters, J., Bhojnagarwala, P., Yang, M., Chokkalingam, N., Pezzoli, P., Parzych, E., Reuschel, E. L., Doan, A., Tursi, N., et al. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nature communications, 11 (1), 2601. https://doi.org/10.1038/s41467-020-16505-0
- South, A. M., Tomlinson, L., Edmonston, D., Hiremath, S., & Sparks, M. A. (2020). Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nature reviews. Nephrology, 16(6), 305–307. https://doi.org/10.1038/s41581-020-0279-4
- Spychalski, P., B?a?y?ska-Spychalska, A., & Kobiela, J. (2020). Estimating case fatality rates of COVID-19. The Lancet. Infectious diseases, 20(7), 774–775. https://doi.org/10.1016/S1473-3099(20)30246-2
- Tabasum, F., dan Ghosh, N. (2021). Reinventing employee morale during Covid Pandemic: Study of psychological contract and job satisfaction of healthcare professionals. International Journal of Financial, Accounting, and Management, 3(3), 259-274. https://doi.org/10.35912/ijfam.v3i3.596
- Tanriover, M. D., Do?anay, H. L., Akova, M., Güner, H. R., Azap, A., Akhan, S., Köse, ?., Erdinç, F. ?., Akal?n, E. H., Tabak, Ö. F., Pullukçu, H., Batum, Ö., ?im?ek Yavuz, S., Turhan, Ö., Y?ld?rmak, M. T., Köksal, ?., Ta?ova, Y., Korten, V., Y?lmaz, G., Çelen, M. K., … CoronaVac Study Group (2021). Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (London, England), 398(10296), 213–222. https://doi.org/10.1016/S0140-6736(21)01429-X
- Walsh EE, Frenck R, Falsey FR, Kitchin N, Absalon J, et al. (2020). RNA-based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study. Medrxiv.
- Wee, M. K., Cabantog, J., Magpayo, D. D., Sabido, N. L., Samson, E., & David, P. (2021). Factors causing vaccine hesitancy among parents in Bulacan. Studies in Medicine and Public Health, 1(1), 15-29. https://doi.org/10.35912/simph.v1i1.715.
- World Health Organization. Draft landscape and tracker of COVID-19 candidate vaccines. (2021). https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
- Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., et al. (2022). Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. The Lancet. Infectious diseases, 22 (2), 196–208. https://doi.org/10.1016/S1473-3099(21)00462-X
- Zhang, C., Maruggi, G., Shan, H., & Li, J. (2019). Advances in mRNA Vaccines for Infectious Diseases. Frontiers in immunology, 10, 594. https://doi.org/10.3389/fimmu.2019.00594
- Zhu, F., Jin, P., Zhu, T., Wang, W., Ye, H., et al. (2021). Safety and immunogenicity of a recombinant adenovirus type-5-vectored COVID-19 vaccine with a homologous prime-boost regimen in healthy participants aged 6 years and above: a randomised, double-blind, placebo-controlled, phase 2b trial. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, ciab845. https://doi.org/10.1093/cid/ciab845